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ABSTRACT 

The theories for the determination of the Newtonian gravi- 
tation constant  (G) and the earth's gravitational constant  (GM) 
have been examined.    Two experiments have been considered for 
determining the Newtonian constant,   one of which appears to be 
capable of improving the accuracy of measurement of G by at 
least one order of magnitude.    Measurement of GM by gradient 
techniques does not,   however,  appear to yield any improved 
accuracy. 

Experimental tests have demonstrated that the rotating 
gravitational gradient sensor concept is capable of measuring 
static gravitational gradients in the   1   g environment of the earth 
and that the sensor designs have the accuracy needed for useful 
measurements (0.5 x 10-' sec-2),    A design of a prototype trans- 
portable gradiometer system has been completed and a program 
for fabrication and test has been established. 

A study of sensor applications indicates that these sensors 
can aid in airborne gravimetry surveys by improving the guidance 
system performance and by obtaining a real time measurement of 
local gravity anomalies. 
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SEC TION   I 

INTRODUCTION 

The following were the three over-all objectives of the re- 
search work: 

1. Design engineering plans and drawings for a 
transportable vertical gradiometer 

2. Study the application of terrestrial vertical 
gravity gradients for the accurate determination 
of the earth's gravitational constant (GM) 

3. Investigate experiments for the accurate deter- 
mination of the Newtonian gravitational constant (G), 

The people who devoted a significant percentage of their time 
to the contract are: 

Principal Investigator 

Sensor Development Engineer 

Analyst 

Electronic Engineer 

Application Studies 

Designer 

Technician 

Geophysical Consultant 

Newtonian Experiment Consultant 

Dr.  Robert L.   Forward 

Mr.  Curtis C.  Bell 

Mr.   David Berman 

Mr.   Larry R.  Miller 

Mr.  E.   Hose 

Mr.  Stanley V.  Pope 

Mr.  Donald D.  Boswell 

Prof.  J. C.  Harrison, 
U.  of Colorado 

Prof. Hermon M.  Parker 
U.  of Virginia 
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SECTION   II 

GRADIOMETER DESIGN 

A gradiometer capable of measuring vertical gradients of the 
earth's gravitational force field has been designed.    Experimental 
testing has been performed on a breadboard model of the sensor head, 
which demonstrated a calibration threshold limit of less than 
0. 2 x 10"9 sec"2 (0. 2 E. U. ).    More importantly,   the experimental 
tests also demonstrated that the rotating gravitational gradient sensor 
concept is capable of measuring static gradients in the noisy   1 g en- 
vironment of the earth.    The magnitude of static gradient signal mea- 
sured in these tests was   600 E. U.    The noise level was   200 E. U. and 
was primarily the result of stray magnetic fields coupling to the central 
flexure and electronic noise in the transmitter; both problems have been 
corrected in the prototype design.    For a detailed discussion of the 
static tests,   see Section V. 

An investigation of internal mechanical noise generation in ro- 
tating gravitational gradient sensors has been completed and a Scientif- 
ic Report on the work has been submitted (see Appendix A).    The re- 
sults of the analysis show that the sensor can be operated equally well 
on a stiff mount at a low rotation frequency and on a soft mount at a 
high rotation frequency.    In addition,  we found that it is necessary for 
three different fabrication errors to be present for internally generated 
noise to affect the gravity sensing mode of the sensor.    The amount of 
noise generated depends upon the amount of rotor unbalance and the 
amount of bearing anisoelasticity.    This noise affects the sensor in an 
amount proportional to the sensor construction errors.    Our results in- 
dicate that the balancing requirements for   0. 5 E. U.   in a typical sensor 
are   0. 02%; these are well within the capabilities of good mechanical 
design and fabrication techniques. 

A 12-month prototype development program has been proposed 
which will result in an assembled vertical gravity gradiometer with 
suspension system and electronics capable of sensing vertical gradients 
in the low E. U.   region.    If desired,  a continuation of this effort to in- 
clude refinements in design should result in a sensor system which is 
capable of sensing   0. 5 E. U.   or better. 

The vertical gradiometer design is discussed in Appendix B 
and the proposed prototype development program is discussed in detail 
in Section VI. 

MMMMMMM^* 



Considerations for gravity gradiometer application have estab- 
lished the need for predicting gradiometer response to mass distribu- 
tions of particular interest.    A digital computer program has been 
developed to simulate the rotating gravitational mass sensor,  and to 
map the gradient contours of the gravitational field created by an ar- 
bitrary mass distribution (see Appendix C).    The analysis in 
Appendix C demonstrates the interaction of the gradiometer with sec- 
ond and higher order gravitational gradients.    The information about 
the mass distribution of an object was found to increase with the gradi- 
ent order.    This treatment gives a basic introduction to gravitational 
tensors as well as a mathematical formulation of the gradiometer 
model.    Computer results are included which demonstrate the gravi- 
tational gradient contours associated with some selected mass 
distributions. 
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SECTION   III 

DETERMINATION OF THE EARTH'S 
GRAVITATIONAL CONSTANT (GM) 

The investigation into the feasibility of utilizing vertical 
gravity gradients on the ground to determine the earth's gravitation- 
al constant (GM) has resulted in an essentially negative finding (see 
Appendix D).    Despite some initial optimism expressed in Quarterly 
Status Report No.   1,   the analysis has encountered the difficulty dis- 
cussed in the Hughes proposal for this contract,  i. e. ,   that gravita- 
tional gradients come primarily from nearby objects.    An analysis 
using a spherical earth would indicate that GM can be separated from 
R   by measuring the gravitational acceleration   g = GM/R^   and its 
vertical gradient   T  =   2 GM/R  .    However,   the   R   measured by   g 
is related to the radius of the earth,  while the   R   in  F   is essential- 
ly the average radius of curvature of the earth at the point of mea- 
surement.    This is only indirectly related to the over-all radius. 

■Mü 
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SECTION   IV 

DETERMINATION OF THE NEWTONIAN 
GRAVITATIONAL CONSTANT (G) 

Scientific Reports have been written on experiments for deter- 
mining the Newtonian gravitational constant   G.    The first experiment 
is a dynamic Cavendish experiment using two rectangular solids,  one 
of which is rapidly rotating and the other suspended on a resonant 
mount.    The second experiment uses a mass which oscillates inside 
a tunnel bored through a larger mass.    The expected accuracies of 
the two experiments are compared with the present accuracy of   G 
and the accuracy expected from the experiment conducted at the 
University of Virginia. 

According to the NBS Technical News Bulletin,  October 1963, 
the presently accepted value for the Newtonian gravitational constant 
is   6.670 ±   0. 015 x 10" ^ ^ m3 kg"1 sec"^ (three standard deviations), 
which indicates an accuracy of only one part in   500. 

This value for the constant was obtained from the "time of 
swing" experiment of Heyl.*   This experiment consists of two concen- 
tric   torsion balances similar to those used in the Cavendish apparatus. 
One balance is held stationary while the other is excited into a pendu- 
lum torsional mode oscillation.    When the two balances are aligned in 
parallel,   the period of swing is less than when they are aligned at right 
angles.    In the former position,  the gravitational attraction between 
the two balances adds to the torsional spring restoring force; and in 
the latter position,   it subtracts from it.    The gravitational constant is 
obtained from measurement of the difference in periods between the 
near and far positions.    The periods were on the order of a half hour, 
and could be measured to   0. 1 sec. 

A method of determining   G   to higher accuracy currently is 
being tested at the University of Virginia {see Appendix E).    The experi- 
ment described in Appendix E is designed to improve the knowledge of 
G   to one part in   10^.    With future versions,  accuracies greater than 
one part in   lO-*,  and possibly one part in   10",   should be attainable. 
This experiment also consists of two concentric torsional balances. 
One balance is free to rotate under the attraction of the second,  while 
the second is motor-driven and servo-controlled to maintain constant 
angular position with respect to the first.    Hence,   both balances will 
rotate through   360°   while a constant torque is being maintained on 
the free balance.    The angular displacement,  after many hours,   deter- 
mines the gravitational constant. 

P.R.  Heyl,   "A Redetermination of the Constant of Gravitation, " Bur. 
Std.  J. Res.   5,   1243-1290(1930). 7 
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In trying to push the gravitational constant to higher accuracy, 
we ultimately approach the limitation of precision in the determination 
of mass separation distances and homogeneity of density within the 
masses themselves.    It is these limitations that form the basis of dis- 
cussion of the rotating flat plate experiment and the vertically tunneled 
sphere experiment. 

THE ROTATING FLAT PLATE EXPERIMENT 

The rotating flat plate experiment utilizes the gravitational inter- 
action between two optically flat and parallel rectangular solids,   one ro- 
tating at constant speed and the other suspended on a resonant mount 
{see Appendix F).    In Appendix F   we have established the experimental 
system schematic,  which consists of   (1)   a torsional suspension system 
for the resonant plate,    (2)   a suspension system and drive for the ro- 
tating plate,    (3)   an optical detection system to measure angular deflec- 
tion,   and   (4)   a vacuum and external disturbance isolation system for 
the entire apparatus.    We have also established that the gravitational 
interaction between the two plates is a second-order gravitational gradi- 
ent and that the dynamic interaction will be at twice the rotation frequency. 
The magnitude of this gradient is on the order of   10 E. U. ,   and depends 
only on the density of the plate for fixed dimension ratios.    When all 
exte  aal disturbances are eliminated,   the accuracy of the experiment is 
limited by internal thermal noise.    For a plate of typical dimensions 
(50 x 5 x 0. 5 cm)   and a signal-to-noise of   10",  a system time constant 
of half a day is required. 

B. THE VERTICALLY TUNNELED SPHERE EXPERIMENT 

The vertically tunneled sphere experiment is based on a sug- 
gestion of Professor J. W. M.   DuMond of the California Institute of 
Technology.    The experiment utilizes the fact that a mass moving freely 
through a tunnel bored in a sphere will oscillate about the midpoint of the 
tunnel at a period determined by the density of the sphere.    To counter- 
act the large forces of the earth in the vertical position,  it is necessary 
to bore two tunnels and measure the net response of two masses sus- 
pended from .he level arm of a balance.    A measurement of the change 
in tlxe period of the balance when the sphere is put in place will then be 
proportional to the density of the sphere.    Limitations on the accuracy 
of the experiment will be in attainable tolerances in manufacture   of 
the balance,   sphere,  and tunnels,   as well as in detection of extremely 
small changes in period.    The analysis indicates that inaccuracies in 
the manufacture of the experimental apparatus will introduce measure- 
ment errors of appreciable magnitude.    It does not appear that this ex- 
periment,   in the configuration analyzed,   can significantly improve our 
knowledge of the Newtonian gravitational constant at this time (see 
Appendix G). 



SECTION   V 

EXPERIMENTAL WORK 

1 

It was realized early in the study program that the cruciform 
sensor design developed earlier in a NASA program would not be 
suitable for a terrestrial vertical gradiometer because its four-arm, 
multiple piezoelectric transducer design made it susceptible to the 
1 g acceleration field of the earth through nonlinearities in the trans- 
ducers.    We have therefore devised a two-arm torsional type sensor 
which has many advantages,   such as easier balancing and matching of 
the mechanical components and a single torsional tre^nsducer for 
readout.    We have analyzed the behavior of this type of sensor,   study- 
ing various designs of the mechanical configuration and methods of 
balancing and matching. 

Many elements of the gradiometer design require advances in 
the present state of the art,  such as the magnetic support system and 
microdyne force measuring system; therefore,  it was necessary for 
the development of the instrument to proceed along experimental as 
well as theoretical and design lines.    During July through September 
1967,  a parallel experimental program was conducted to test the feasi- 
bility of a breadboard model of the torsional type sensor head.    Funding 
for this experimental work was a separate general research program 
using company-owned equipment and hardware. 

A torsional type sensor (Figure 1) was constructed and calibra- 
ted by means of our dynamic gravitational gradient generator (see 
Figure 2).    Sensitivity of the sensor under these conditions was 
16nV/E.U.    The measured threshold of the sensor was 0.2 E.U.    The 
predominant noise sources observed were front end electronic noise 
and thermal noise (0. 05 E.U.) 

The sensor was then tested while rotating,  and demonstrated 
for the first time an observable response to a static gravitational gra- 
dient field.    The sensor was subsequently recalibrated with the dynamic 
gravitational gradient generator.    The results of this calibration test 
verified that the sensor response was indeed due to gravitational 
excitation. 

J 
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Fig.   1.        Torsional sensor. 

10 



M 4181 

Fig.   2.       Dynamic gravitational gradient field generator. 
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A, STATIC MASS TEST 

The laboratory test of August 25 consisted of exciting the oper- 
ating rotating gravitational gradient sensor by   two   80 lb cylindrical 
lead test masses; each was at a radial distance of   26 cm from the 
center of the rotating gravitational gradient sensor,  but on opposite 
sides.    In this condition the gravitational gradients of the two masses 
add. 

We define the static gradient excitation   (rs)   as the calculated 
resonant mode gravitational torque produced by the test masses di- 
vided by the sensor moment of inertia.    rs   is proportional to the gravi- 
tational gradient of the test masses and is given by 

3GM    ,       -2. r     =    s—   (sec    ) 
R3 

(1) 

where   G   is the gravitational constant,    M   is the total test mass,  and 
R   is the distance between the sensor and each test mass. 

The assumptions implied in eq.  (1)   are that the test masses 
lie in the plane of sensor rotation and that   R   is much larger than the 
sensor radius.   Actual test conditions introduce errors of less than 
1%    in the above. 

Using the values discussed above, 

T     =   3(6.67 x 10"8)(2x 80x454) 825E#U. 

(26? 

where    1 E. U. 10      sec 

When these test masses were in the proximity of the sensor, 
the sensor output increased   15 ±   5 JJLV.    The sensor scale factor of 
the static test   k     was,   therefore: 

15 t 5 fJiV 
"    825 E.U. 18 ± 6 nV/E. U. 

The uncertainty of   ±   5 (J.V (200 E. U. ) in this test was primarily due 
to   FM   transmitter noise. 

12 



B. DYNAMIC CALIBRATION TEST 

The dynamic calibration was performed by rotating two test 
masses under the (nonrotating) sensor.    In the static test the sensor 
signal is broadcast through an FM transmitter to the signal analyzing 
electronics; in the dynamic test direct cabling is used. 

A separate transmitter gain test was therefore performed to 
relate the instrumentation variation between the two gravitational 
tests.    In this gain test the sensor was excited acoustically and out- 
put data were obtained for both transmitter instrumentation and 
cabled instrumentation. 

Results of this test indicate that the transmitter instrumenta- 
tion produces   3. 1 times the output of the cabled instrumentation for 
the same input. 

The equivalent gravitational excitation   (T ,)   in the dynamic 
gravitational test is given by 

rd   = 
3 GMd .35   A2 ^ 1155   A4 1 +T2 A +T2r A (sec    ) U) 

where 

M 

d 

R2 

h 

total test mass 

one-half the separation distance between the 
rotating test masses 

d2
+h2

+i2 

distance between plane of the sensor and plane 
of the test masses 

i 

A 

sensor radius 

2 td/R' 

For this calibration test 

M   =   2 x 1212 g 

d    =   4 cm 

h     =7.5 cm 

t     =6.35 cm 

Robert L. Forward and L. R. Miller, "Generation and detection of 
dynamic gravitational gradient fields," J. Appl. Phys. 38, 512-518 
(1967). — 13 
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and the equivalent gradient excitation 

_     _   3(6.67 x 10"8)(2 x 1Z12)(4)Z 

(4)2 + (7.5)2 +(6.35)2 5/2 
1 + 0. 17 =   65 E. U. 

The sensor output during this test was   340 nV or,  related to 
the static test by the   FM   instrumentation gain,  (340 x 3. 1)   =   1050 nV 
(equivalent).    Therefore,   the equivalent sensor scale factor   (k,)   for 
the dynamic test is 

1050 nV 
65 E. U. 16 nV/E. U. 

The close agreement between the static and dynamic scale fac- 
tors verifies that the sensor was indeed responding to the gravitational 
gradient field of the static test masses. 

The high noise level observed in the static tests will be elimi- 
nated in the final design by means of an improved telemetry circuit. 
(See Figure 11 in Appendix B. )   Additional noise resulting from mag- 
netic interactions will be eliminated by replacing the steel flex pivot 
with a flexure made of quartz. 

14 



SECTION   VI 

CONCLUSIONS AND RECOMMENDATIONS 

The studies of the experiments to determine the Newtonian 
gravitational constant   (G)   have demonstrated that improved preci- 
sion of measurement is achievable.    The analysis of the rotating 
flat plate experiment indicates that it is potentially capable of im- 
proving our knowledge of   G   by one to two orders of magnitude. 
Therefore,  it is recommended that this experiment be investigated 
in further detail,  both analytically and experimentally. 

Although determination of the earth's gravitational constant 
(GM) does not appear feasible using gravity gradiometer techniques, 
the rotating gradiometer can be helpful in the field of airborne 
gravimetry as outlined in Appendix H.    In addition,  experimental 
tests have already demonstrated that the rotating gravitational gradi- 
ent sensor is capable of measuring static gradients on the earth.  It 
is therefore recommended that the vertical gradiometer design por- 
tion of the program be continued according to the proposed future 
program outlined in Section VII. 

15 
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SECTION   VII 

PROPOSED FUTURE PROGRAM 

We propose a 12-month experimental prototype development 
program for the fabrication and test of a transportable vertical gravi- 
ty gradiometer,  as outlined below and in Figure 3. 

The program will begin with the manufacture of some proto- 
type central flexures of quartz and/or beryllium copper.    These flex- 
ures will be calibrated and tested using the breadboard torsional 
sensor arms already fabricated.    Magnetic noise will be checked 
while running. 

The Cambridge Thermionic Corporation has been requested 
to submit a quotation on a three-axis suspension system. Prelimi- 
nary information has indicated an estimated cost of $40, 000. This 
system will be ordered at the beginning of the contract. 

Fabrication and assembly will then proceed on the sensor 
head vacuum chamber and telemetry.    Careful dynamic calibration 
tests will be run and full calibration curves will be recorded. 

The sensor head will then be mounted in its vacuum chamber 
and subjected to resonant torsional vibrational inputs.    The quadru- 
pole inertias will be adjusted to match both of the support spring- 
inertia ratios.    This condition is indicated by a minimum response 
to torsional noise. 

The sensor will then be tested for noise and gradient sensi- 
tivity while rotating in a horizontal plane.    The data processing 
electronics will be manufactured and,  upon receipt of the three-axis 
magnetic bearing,  the entire system will be assembled,   calibrated, 
and tested while rotating in a vertical plane. 

Calibration threshold of the experimental prototype design 
using rotating proof masses wil)  ^e less than   0. 2 x 10"' sec"^ 
(this threshold has already been reached in the breadboard model). 
The operating threshold of the experimental prototype should easily 
be better than   5 x 10"^ sec~   .    If desired,  a continuation of the 12- 
month experimental prototype program to include design refine- 
ments based on experience gained in prototype fabrication should 
result in a sensor operating threshold approaching the calibration 
limit (0.12 x 10-9 sec"2). 

17 
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APPENDIX  A 

INTERNAL MECHANICAL NOISE GENERATION 
IN A ROTATING GRAVITY GRADIOMETER 

(Prepared by D. Berman) 
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SUMMARY 

A rotating gravity gradiometer measures the mass of an ob- 

ject by detecting its gravitational force gradient.    If properly ba- 

lanced,   the device can demonstrate a high level of accuracy and 

sensitivity.    Various unbalances in the gradiometer system give 

rise to internal mechanical noise.    This paper identifies the major 

sources of unbalance and establishes the degree of manufacturing 

exactness required to control noise generation.    The dynamic grad- 

iometer is a rotating device and is subject to shaft translations 

caused by misalignment of the rotor and the rotating center of mass. 

An elliptical shaft translation will be induced by anisoelasticity in 

the gradiometer bearings.    Such motion generates anomalous exci- 

tations by coupling through any further unbalance internal to the 

gravity sensitive mechanism.    We have found that the internal me- 

chanical noise is directly proportional to the product of these three 

unbalances.    In addition, for operation above shaft resonance the 

noise coupling is independent of rotational speed.    Below resonance, 

noise is proportional to the fourth-power of speed.    Near future grad- 

iometer application requires a gravitational gradient sensitivity level 

of   0.5 EU (~ 10        g/ft).    Using presently available suspension,  drive, 

and electronic systems,  all three balancing requirements will lie be- 

tween   0.1%    and   0.01%. 
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I.       INTRODUCTION 

We are presently engaged in the design,  construction,   and 

test of a rotating gravity gradiometer for sensitive measurement of 

the earth's vertical gradient.    These sensors can also be used on 

spinning lunar orbiters to measure the mass distribution of the moon, 

and on spinning deep space probes to measure the mass of the 

asteroids. 

A rotating gradiometer can measure the mass of an object at 

a distance by using a rotating system of masses and springs to detect 

the gravitational force gradient field of the object.'•   *    The dynamic 

(or rotating) gradiometer,   in its simplest form,   consists of one or 

more low level accelerometers mounted to a rotating frame with the 
r 2] 

sensitive axes perpendicular to the centrifugal force.     J    When this 

is done,  the output of the accelerometers will be found to contain dy- 

namic components at multiples of the rotation frequency which are 

driven by the various gradients of the field.    In particular,  the com- 

ponents of the   n      order gradient, when examined in the rotating 

reference frame of a sensor, will be found to have time-varying coef- 
[31 ficients which are at   n   times the rotational frequency of the sensor.    J 

For example, if a simple spring-mass is rotated in a static gravitation- 

al field, the gravitational force gradient of the field (second rank gravi- 

tational tensor) will induce dynamic forces in the sensor with a fre- 
f 41 

quency which is twice  the rotation frequency of the sensor.     J 

The basic idea behind the operation of these sensors is an old 

one in electronics   —   the concept of chopping.    This is used extensive- 

ly in   dc   amplifiers,  where the low level   dc   signal is chopped,  trans- 

formed into an   ac   signal,  and then amplified and measured by phase 

sensitive detectors.    In the gravitational sensors,  the chopping of the 

static gravitational field is accomplished by physically rotating the 
[ 51 

sensor so that its response to the gravitational field varies with time.     J 
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Because the dynamic gradiometer is a rotating device,  it has , 

certain design problems common to a precision gyro,  particularly 

noise generation caused by rotating unbalances.    Indeed,   of the sev- 

eral types of noise associated with the operation of a rotating gradi- 

ometer,  internal mechanical noise is potentially the most limiting. 

Thermal and external mechanical noise can theoretically be separ- 

ated from the gravity signal because it is random and thus phase- 

incoherent.    Other types of nongravitational noise,  such as acoustic 

and electromagnetic,   can be eliminated by shielding.    However,  in- 

ternal mechanical noise resulting from center of mass   misalign- 

ments and bearing anisoelasticity    is phase-coherent and at the same 

frequency as gravitational excitation (2 0). 

Internal mechanical noise is the result of the combination of 

the following three unbalances and is generated even if constant angu- * 

lar speed is maintained: 

• Sensor head unbalance:   Deviation between the geo- 

metric center of the sensor head and its center of 

mass 

• Rotor unbalance:    Deviation between the rotor geo- 

metric center and the center of mass of the entire 

suspended system 

• Bearing unbalance:    Circumferential variations in the 

stiffness of the bearing-shaft combination (anisoelasticity). 

It is well known that when the geometric center and center of 

mass of a rotating body do not coincide,  the geometric center will de- 

scribe a circle in space.    The radius of the circle will be defined by 

the frequency of rotation relative to the natural frequency of the shaft- 

suspension system.    However,  if there is any bearing unbalance such 

that the restoring force is not constant as a function of circumferential 

position,  the path described will be elliptical rather than circular 

(Fig. A-1)'-. J  An elliptic motion can generate excitalio«s in the rotating 

coordinate system of the sensor,  which are at the same frequency as 

gravitational excitation.    Any unbalances in gradiometer fabrication 

will allow this nongravitational noise to couple in and distort the gravity ^ 

signal. 
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Fig. A-l.       Elliptic motion of the shaft caused 
by bearing anisoelasticity. 
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The amount of coupling produced by the nongravitational forces 

on the sensor arms is a function of the sensor unbalance.    An ideally 

balanced sensor will not respond to such forces.    J    The translational 

force is introduced to the arm through its geometric center.    If its 

center of mass does not coincide,  then the applied force resolves into 

a translational force at the center of mass plus a torsionai couple. 

Thus,  the mechanical noise is also a linear function of the deviation 

between the sensor center of geometry and center of mass. 

In order to obtain the required accuracy and sensitivity of a 

gradiometer,  all noise sources must be controlled to within a toler- 

able magnitude.    The magnitude of the anomalous gravity signal gen- 

erated by internal mechanical noise may be described in terms of an 

"equivalent" noise gradient.    The equivalent gradient may be calcu- 

lated as a function of rotational speed,   suspension stiffness,  and the 

three unbalance amplitudes.    Optimum design parameters and their 

associated balancing requirements may then be selected to reduce the 

equivalent gradient below the gradiometer sensitivity requirement. 

For most potential applications this is   0. 5 EU,  which would allow a 

0. 02%   measurement of the earth's gradient field of   3000 EU. 
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II. SYSTEM DESCRIPTION 

The complete gradiometer system is divided into three basic 

areas;   (1)   sensor head (and housing);   (2)   suspension system,  in- 

cluding shaft,  bearing,  and rotor; and   (3)   motor drive. 

The sensor head of the torsional gradiometer,  under, develop- 

ment by HRL, is shown in Fig. JV-2. It consists of two mass quadru- 

poles made of brass,  which are connected internally by a magneto- 

strictive transducer and externally by two flexural pivots whose op- 

posite ends are joined to a mechanical bridge between them.    The 

sensor head is   4   to   5 in. in diameter and   1 in.  thick.    The over- 

all length of the bridge is approximately 4 in.    The dynamic torsional 

stress produced by gravitational forces acting on the sensor arms 

torques the magnetrostrictive wire and produces a proportional   ac 

voltage across the coil surrounding the wire.    The mechanical bridge 

connects to the bearing and associated support system.    A housing 

surrounding the sensor head assembly will rotate with the sensor for 

windage reduction.    The housing also provides electrostatic and elec- 

tromagnetic shielding for the sensor. 

The sensor head, housing, and associated electronics are 

mounted on a three-axis magnetic bearing support and drive system 

which rotates the sensor smoothly and quietly at its operating speed. 

The rotation speed is controlled by a servo loop between a photoelec- 

tric pickoff on the rotor and the voltage control on the drive motor 

windings.    The drive power is kept at a minimum to maintain constant 

angular velocity   on the rotor.    The power requirement of the bearing 

and drive motor will be approximately   30 W.    This will provide ro- 

tation,  and a support stiffness greater than   10,000 lb/in. 

In developing a suspension system specifically for a gravity- 

gradient sensor,   the principal problem is the avoidance of noise. 

Magnetic suspension systems are known to operate with less noise 

than either air or ball bearings and should compare in noise level only 
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MECHANICAL 
BRIDGE 

MASS OUAORUPOLE 

Fig. A-2.       Torsional gradiometer sensor head.    (Housing not shown. ) 
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with electrostatic suspension. For a gravity-gradient sensor, the 

selected bearing must support 5 to 10 lb; this eliminates electro- 

static bearings, which are inherently less noisy, because voltage 

breakdown in a vacuum system prohibits suspension of such weights. 

In a magnetic bearing the shaft does not touch the outer race. 

The bearing mechanism consists of a magnetic field rather than 

solid,  liquid,  or gaseous bearing materials,   so that full operation 

in a vacuum is practicable.    Magnetic bearings eliminate mechani- 

cal friction and permit high speed operation over a wide temperature 

range.    Because they do not use lubricants,  they are particularly 

advantageous in environments which are hostile to lubricants,   such 

as outer space. 

Attachment of the drive mechanism to the shaft can be made 

in one of two ways: through a magnetic coupling of the motor, or a 

direct attachment of the armature to the shaft. Either of these will 

produce a satisfactory frictionless drive. 

An assembled gradiometer prototype system is shown in 

Fig.  A-3.    The suspension, drive and housing are indicated; the sensor 

head itself cannot be seen inside the housing. 
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SUSPENSION 
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DRIVE 

Fig. A-3.      Assembled gradiometer prototype system,  show- 
ing   sensor housing,   suspension, and drive. 
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III. MODEL AND COORDINATE SYSTEM 

Figure A-4 is a schematic representation of the assembled gradi- 

ometer.    A model of the sensor head consists of two rigid arms 

mounted perpendicularly on torsional springs.    When they are rotated 

at constant angular speed,  their relative motion responds ideally to 

the local gravitational gradient and rejects external accelerations. 

Also shown in the figure are the basic mechanical elements associated 

with suspension and drive of the gradiometer.    A combination of un- 

balance in all of these elements gives rise to mechanical noise,  as 

will be shown. 

Figure A-S is the coordinate systemusedto describe the dynam- 

ical behavior of the assembled gradiometer system.    The   x-y   axes 

are fixed in space,  and neither rotate nor translate.    The   w-z   axes 

are attached to the housing,  which rotates at constant angular speed 

n.    The shaft-mounted housing also experiences a translation in the 

form of a negative circulation   (a circular motion at the same frequency, 

but opposite direction of spin).    The sensor head itself vibrates tor- 

sionally with respect to the rotating housing.    Its displacement mea- 

sured in the   w-z   frame is the angle   a. 

The sensor head therefore experiences three concurrent mo- 

tions:    rotation,  circulatory translation,   and vibration.    Two of these 

motions are specified  —   rotation and translation. 

The rotation is a constant spin    fl.    In gradiometer operation, 

the platform is maintained at constant speed by external drive and 

servo-loop control.    The translational motion is a constant negative 

circulation (-ß).    A negative circulation will excite an unbalanced sen- 

sor head as if by a local gravitational gradient.    Furthermore,  any 

arbitrary or random motion can always be decomposed into components 

containing a negative circulation.  Fig. Ar^t»)- 'Iftttife'tiiBe^f ananiso- 

elastic shaft,  the motion will be elliptic.    As will be shown later,  an 

elliptic motion is completely described by one positive and one negative 

circulation. 
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ROTOR 

aß 
TORSIONAL 
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TRANSDUCER 
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HOUSING 
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Fig. A-4.       Schematic representation of rotating 
(torsional) gravity sensor and associ- 
ated spin mechanism. 
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LINEAR MOTION 

RIGHT-HANOED 
ORCULATION 

J 
'S 

Fig. A-6(a) 
Translational motion de- 
composes into right- atui 
left-hand circulation. 

v 

Mil-« 

Fif. A-6(b) 
Positive circulation produces 
no vibrational effect in rotat- 
ing reference frame. 

D4M-« 

rig. A-6(cl 
Negativ i' circulation in- 
ciui 's a vibrational mode 
forcing function at twice 
the frequency of rotation. 
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The generation of anomalous gradiometer signals (or noise) 

from negative circulation components of translation is now demon- 
I 71 strated.    J   Figure A-6(b) and'(c) showsthe: separate effects of (+) 

and   (-)   circulation on the sensor head.    In the case of positive cir- 

culation,  the force vector always points from   S   to   N,   regardless 

of the sensor orientation.    The centrifugal force is constant in the 

rotating frame; therefore,  positive circulation (of    fi) has no effect 

on sensor arm vibration.    The arms merely experience a constant       x 

acceleration. 

However,  the negative circulation component is opposite to 

that of the spin,  as shown in Fig. A,-6(c). The inducedjforpe vector 

points sometimes from   S   to   N   and sometimes from   N   to   S,  de- 

pending on sensor orientation.    In the sensor-fixed frame,  the centri- 

fugal force reverses direction twice during one complete cycle. Hence, 

a vibrational mode forcing function of frequency   2 J?   is produced. 

In ideal operation,   the oscillatory displacement    a   of the sen- 

sor head with respect to the rotating housing is a measure of the local 

gravitational gradient.    However,  in the present case,   the center of 

mass of the torsional sensor head does not coincide with its center of 

geometry.    We define   h   as the deviation.    We will shortly demon- 

strate that the magnitude of the anomalous gravity signal is proper- 

tional to   h   (for a constant circulation). 

The amount of negative circulation can be further related to 

the magnitude of other unbalances:   rotor misalignment coupled with 

bearing anisoelasticity.    We will separate the effects of these three 

unbalances by first treating the sensor head unbalance  under appli- 

cation of a negative circulation of fixed radius   d.    We shall there- 

after evaluate   d   in terms of shaft speed, natural frequency,  and 

rotor and bearing unbalances. 

* 
The sensor head actually undergoes a dual vibration of its two 
mass quadrupoles (Fig. A-2orA-4), and the gravity signaUs mea- 
sured by their relative displacement.    In the present discussion 
of noise,  we may assume one quadrupole perfectly balanced. 
Otherwise,    h   represents the relative unbalance between the two 
quadrupoles. A-i^ 
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IV.       EQUATIONS OF MOTION 

The equation of motion for the unbalanced vibrating sensor 

head, in the rotating frame and under application of negative circula- 

tion, is obtained most directly from the Lagrangian: 

ar 
8a =   F . (1) 

Here,    T   is the total kinetic energy of the vibrating sensor head and 

F   represents the total forces (torques) applied.    In operation,   these 

forces contain the gravitational coupling and the torsion spring re- 

storing and damping forces. 

The total kinetic energy consists of translational energy of 

the center of mass,  plus rotational energy about the center of mass: 

=   y(x     + y   ) +   j  (Q + a) (2) 

where   M   is the mass of the sensor head (half),  and I   is the moment 

of inertia of the sensbr head about the axisof vibration. In order to facili- 

tate the derivative operations in   (1),   we first express all variables in 

terms of   a.    The fixed   x-y   frame coordinates of the center of mass 

are related to the rotating-translating coordinate   a   by straightfor- 

ward geometric considerations (see Fig. A-5): 

x   =   d cos f2 t   +   h cos (Qt   +   a) 

y   =    - d sinfi t   +   h sin (£2 t   +   a) 

(3) 
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with the corresponding velocity components: 

x = - 0 d sin fi t - h (fi + a) sin (fi t + a) 

(4) 

y = - n d cos n t + h (fi + a) cos (JU + a) . 

We may now write   T   completely in terms of  a.    Substituting 

(4)   into   (2)   yields 

T = -Id + Mh2) (Q + a)Z +Md 0 d - 2fih (0 + a) cos (ZOt + o) 

(5) 

The required derivative operations then yield 

—  =   (I + Mh2) (J5 + a) - M n d h cos (2 fi t + a) 
8 a 

d/8T\ 
=   (I + Mh2)ä + M SJ d h (20 + a) sin (2 0 t + a) (6) 

9T 
8Q 

=   M 0 d h (0 + a) sin (2 n t + a) . 

Substituting these expressions into  (1)  yields the exact equation of 

motion of sensor head vibration in the rotating and translating frame: 

(I + Mh2) Ü   +  n2 d h M sin (2 fl t + a)   =   F. (7) 
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This describes the dynamic behavior of the gradiometer sensor head 

for constant angular speed    n,  a specified negative circulation   d, 

and a center of mass misalignment   h.    No approximations have been 

made,   and no higher-order effects have been neglected.    Indeed,  the 

results will shortly demonstrate that internal mechanical noise gen- 

eration is a third-order unbalance effect.    Thus it could not be iden- 

tified at all if second and higher-order effects were neglected. 

The moment of inertia   I   of the sensor head (see model. 

Fig.  A>4) is 

I   =   Ma (8) 

where   a   is the radius.    The modified moment of inertia implied by 

(7) may be rewritten 

I    =   Ma (9) 

Because the unbalances to be encountered will be very small (< 1%), 

the effect of   h   in nioäÜfying   I   will be   insignificant.     Hence, 

we will neglect the slight change in   I   caused by the sensor head 

unbalance.    Furthermore,   the angular motion   a   of sensor head vi- 

bration is extremely minute,   on the order of   10 rad.    Therefore, 

it is a safe approximation to ignore the slight phase fluctuation im- 

plied in the right-hand side term of   (7). 

The extremely significant effect of the h-unbalance is dis- 

closed by the second term in the left-hand side of (7).    This term 

is driving the sensor head at its resonant gravity-sensitive frequency 

(2 fi),  and will therefore cause an anomalous gradiometer reading. 

The effect will be demonstrated below. 

To demonstrate the noise generating effect of the h-unbalance, 

we need to evaluate the generalized force   F.    Since    a   is an angle, 

F   is a torque: 
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F/M   =    -tf *    a - -~ *    a o Q 3 a     F sin 2 £2 t. (10) 

In the above,  the terms are,   respectively,  the sensor head torsional 

spring and damping forces,  and the dynamic gravitational coupling 

force: 

n      =    sensor head torsional resonant frequency iZQ) 
o 

Q     =    sensor head mechanical quality factor (amplification) 

F     =    gravitational gradient (second order) :   Gm/R   for 

mass m   at distance   R 

G     -    gravitational constant. 

Substituting   (10)   into   (7)   yields (ignoring the slight moment of 

inertia and phase deviations,   as discussed above) 

 o 
Q 

+ n   a = o (-&) 
sin 2 ß t (11) 

where we have divided by   Ma  . 

Equation (11) dramatizes the influence of the sensor head un- 

balance (h) in producing an anomalous gravity signal.    The gravita- 

tional gradient signal    T    at   Z Q   is now directly coupled to a me- 

chanical noise signal, which is proportional to both the sensor head 

mass unbalance and the magnitude of negative circulation.    We can 

conveniently define the "equivalent" gradient   T 

We are considering only noise in the measurement of the second-order 
gravitational gradient.   There are really higher    frequency components 
in F which correspond to higher-order gradients.   The amplitude of 
these terms is much smaller than the second order gradient.  Although 
these higher frequency terms are not disturbed by elliptical »haft trans• 
lation,  they would have noise due to nonlinearities. 
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r    *    fi2dh/3a2 , (12) 

which the gradiometer instrument would incorrectly read as a gravi- 

tational field. 

The result of   (12)   is complete in thatj    for a given magnitude 

of negative circulation   d,  the required balancing   h   can be deter- 

mined for any operational speed  Ü.   However,    d   is not an indepen- 

dent parameter, but also depends on rotational speed plus other un- 

balances.    These additional unbalances are external to the sensor 

head,  and are found in the gradiometer drive mechanism (see Fig. 4). 
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V.       DYNAMICS OF SHAFT TRANSLATION 

Rotating shaft behavior and the motion induced by rotor/ 

bearing unbalances have received great attention.    In particular,  the 

motion of an unbalanced shaft rotating on anisoelastic bearings (with 

zero damping) has been previously derived'-   *: 

er2 

X cos n t 

sin to t 

xl - 1-r2 

X 

2 er 
y yl - 1-r2 

y 

(13) 

In (13),    e   represents the distance between the center of mass of the 

entire suspended shaft and the position of neutral rotor equilibrium; 

r     and   r     are the inverse ratios of rotational speed   £2   to the trans- x y r 

verse components of the natural frequency of shaft suspension  £2  : 

r    = n/n 
x '   x 

(14) 
r    = n/n 

y y 

where we define a mean-square value: 

n2  s   n2   +   n2 . (15) 
n x v *     ' 

The anisoelastic shaft restoring force is shown in Fig. A-4,  and the 

coordinates   x,  - y. are defined in Fig.. A-5. 
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The trajectory described by  (13)  is an ellipse.    As discussed 

above,   this motion contains a negative circulation component.    An el- 

liptic niotion can be decomposed into the sum of two circular motions: 

one positive of large amplitude,   and one negative (opposite to the shaft 

rotation) whose amplitude is proportional to the unbalance (see Fig. 

A-6(a)).    The component of negative circulation at 1 ß converts into 

2 fi   excitations in the rotating coordinate system of the sensor and 

can couple into the gravitational gradient excitation through any un- 

balances in gradiometer fabrication. 

A positive circulation of amplitude p is expressed mathema- 

tically by 

x     =   p cos Q t 
P K 

y      =   p sin 0 t 
'P ^ 

(16) 

and the negative circulation of amplitude  d by 

x     =   d cos Q t n 

v      =    - d sin Q t   . 

If the net of these circulation motions is to produce the elliptical 

motion implied by  (13), we must have 

(17) 

p + d   =    er\l   (l -r*) 

p - d   =   er   / 

(18) 

from which we obtain finally 

d   = 

the amplitude of negative circulation. 
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Since the difference between the two transverse components 

of natural frequency will be small,  we define 

x'    y 
(20) 

where   €   is the bearing anisoelasticity,  or circumferential deviation 

in translational stiffness of the bearing plus shaft.    Using (14),  (15), 

and (20),  eq.  (19) becomes 

d   =   e € 
'   n 

F^f (21) 

This expression for the amplitude of negative circulation is adequate 

to describe the translation of the shaft, so long as we do not allow 

the rotational speed Q  and natural frequency  J?     to become compa- 

rable.    In practice, this situation would always be avoided as a 

matter of routine.    We thus consider the two regimes   J2 < 12     and n 
Q > £2     and the corresponding solutions 

J2' 
ee 

n 
n 
2   ' 

e« 
2 • 
n 

n 

n   >   n 
n 

(22) 

We see from (22) that   d   always diminishes as the square of the fre- 

quency ratio, in either direction from the resonant condition.    Thus, 

for operation above resonance,  we would like to lower the resonant 

frequency as much as possible (soft-mount); below resonance,  the 

bearings should be very stiff. 
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VI.       EQUIVALENT GRADIENT 

We are now in the position to return to (12) and express the 

equivalent gradient noise   F   completely in terms of gradiometer 

system unbalances:   sensor head and rotor mass unbalance,   and 

bearing anisoelasticity.    Substituting (2Z) into (12) yields 

r 

r e 

~ e h « c    , n > n 
•5 n   ' n 

(23) 

2 
We have dropped the factor of  a ,  and will henceforth interpret both 

h  and   e   as a fraction of sensor head radius.    The mechanical noise 

is thus directly proportional to the product of the three unbalances. 

For the above resonance case   (ß >  n  ),  noise is independent of ro- 

tational speed and diminishes as the square of natural frequency. 

Below   resonance (0 < 0 ), noise is an inverse function of natural » n 
frequency,  and is also proportional to the fourth power of rotational 

speed. 

To demonstrate the significance of these frequency regimes, 

we have plotted the complete equation (23) in Fig. A.-7. For convehience, 

we have taken all of the unbalances to be identically equal to   0. 01% 

(a lower limit on practical balancing capabilities).    Hence,    e = h = 

« = 0. 0001.    Equivalent gradient is plotted versus rotational speed, 

with natural frequency of suspension as a parameter.    The peaks 

have been illustrated only to indicate to resonant condition.    The 

actual shape of these peaks will depend on the damping characteristics 

of the suspension system (which are neglected in this analysis). 
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For practical near future gradiometer applications,   sensitiv- 

ities of   0. 5 EU will be required.    In addition, a practical lower limit 

on operating frequency (because of electronic limitations) is    15 Hz. 

Using these values,  we can obtain from Fig. A-7 the required natural 

frequency of shaft suspension for control of noise to below   0. 5 EU. 

There are two answers:   n     =   5 Hz and   30 Hz.    In other words, n 
natural frequencies less than   10 Hz below rotation or greater than 

15 Hz   above rotation are satisfactory.    In a practical situation,  stiff 

support is more easily attainable.    In fact,  it is quite difficult to con- 

struct drive mechanisms of such low suspension stiffness as   5 Hz 

which would be practical for gradiometer application.    Therefore, we 

may   tonclude that when possible,  rotating gradiometers   should 

be operated below the natural frequency of shaft suspension (ß <Q ). 

InFig.. A-7 alluhbalances were assumed to be identically equal 

to   0. 01%.    It is of further interest to explore the actual balancing 

requirements for an optimum choice of rotational speed and natural 

frequency.    We have seen in Fig. A-7 that the desirable mode of oper- 

ation is     S2 <   n ; therefore,   the best condition is for the inequality 

to be maximized.    The smallest practical value of rotational speed 

is   n = 15 Hz,  while the largest practical valui? for suspension fre- 

quency is   Q   = 150 Hz.    Using these values, and   F   = 0. 5 EU,  eq. 

(23) is plotted in Fig. Är8; "The sensor head balance requirement is 

plotted versus maximum tolerable rotor unbalance; bearing aniso- 

elasticity is the parameter.    In Fig. A-S/the träde-öff Tfilation;ship 

among the various balancing requirements is demonstrated.    For ex- 

ample,  if bearing anisoelasticity of 0. 001% could be achieved,  the 

mass balancing requirements of both sensor head and rotor would be 

only   0. 1%.    On the other hand,   if all unbalances are assumed identi- 

cal,   the mutual requirement is   0, 02% as shown.    This may be rea- 

lized as a relaxation of the    0. 01% mutual requirement corresponding 

to the suspension natural frequency of   30 Hz (Fig. A'-,?). 
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Fig. A-8      Gradiometer balancing requirement for control 
of internal noise generation to   0.5 EU. 



To explore further the effect of natural frequency,  we have 

plotted in Fig. A-9 the equivalent gradient  F     with mutua: unbalance 

and natural frequency as variables.    The rotational spe«»d is con- 

stant at   15 Hz, while the unbalance is varied from   0. 001%   to 

1%.    The   0.5 EU requirement is shown, along with the correspond- 

ing   0. 02% result at    J2     =   150 Hz.    From Fig. Ar 9, we observe that 

an order of magnitude increase in shaft suspension stiffness would 

be required to relax the   0.02% requirement   to   0. 1%.    This is not 

feasible and balancing will need to be somewhat more critical than 

0. 1%. 

I 
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VII.       SUMMARY 

The foregoing results demonstrate that the internal mechan- 

ical noise generation in a rotating gravity gradiometer is directly 

proportional to the product of three system unbalances.    In addi- 

tion,  for operation above shaft resonance,  the noise is independent 

of rotational speed.    Below resonance,  noise is heavily dependent 

on rotational speed, being proportional to the fourth-power. 

We have established   the balancing values required to con- 

trol the anomalous instrument excitations to below   0. 5 EU.    Keep- 

ing within the practical ranges of rotational speed   and   shaft sus- 

pension,  it is concluded that balancing to between   0. I'/o and 0. 01% 

will be required.    For the nominal values of   15 Hz rotational speed, 

and   150 Hz suspension frequency,  the mutual requirement on all 

three sources of unbalance is   0.02%. 
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SUMMARY 

A rotating gravitational gradient sensor system has been 
designed which is capable of sensing the vertical gravitational 
gradient of the earth while operating on the earth's surface.   The 
system consists of a torsional type sensor head,  a magnetic sup- 
port system,  and associated telemetry and electronics.    This re- 
port describes the considerations which went into the design 
choices,  illustrates design features,  and derives the magnitude 
of the noise errors present in the sensor design.    Noise source 
analysis indicates an estimated error of   0. 6 x 10"" sec"^ rms 
(0.6 E. U. )   for all noise sources for this initial prototype design. 



SEC TION   I 

INTRODUCTION 

During the past year we have been engaged in work under Air 
Force Cambridge Research Laboratories Contract AF 19(628)-6l34, 
"Research Toward Feasibility of an Instrument for Measuring Vertical 
Gradients of Gravity. "   We undertook the development of design en- 
gineering plans and drawings for a transportable vertical gravit/ gradi- 
ometer; it was desired that the instrument have the capability of attain- 
ing an ultimate accuracy and sensitivity of   0. 5 E. U.  (Ebtvos unit   -■ 
lO-9 sec"2). 

It was realized early in the study program that the cruciform 
design developed earlier in a   NASA   program would not be suitable for 
a terrestrial vertical gradiometer because its four arm,  multiple 
piezoelectric transducer design   made   it   susceptible   tc   the      1    g 
acceleration field of the earth through nonlineanties in the transducers. 
We have therefore devised a two-arm torsional type sensor which has 
many advantages,   such as easier balancing and matching of the mechan- 
ical components and a single torsional transducer for readout. 

We have analyzed the behavior of this type of sensor,  studying 
various designs of the mechanical configuration and methods of balanc- 
ing and matching.    We have constructed and operated breadboard models 
of these sensors which have detected the gravitational fields of nearby 
stationary masses,   thus proving the feasibility of the concept,  and have 
built and operated dynamic gravitational field calibration setups which 
have experimentally determined the threshold sensitivity. 

Because many factors of the gradiometer design require ad- 
vancement of the "state-of-the-art" (e.g. ,  magnetic support system 
and microdyne force measuring system),   the development of the instru- 
ment must necessarily proceed along experimental as well as theoreti- 
cal and design lines. 

Our current laboratory testing is directed toward measuring 
static gradients and comparing sensor response with the expected re- 
sponse based on sensor calibration tests. 

Our laboratory test of August 25 demonstrated for the first 
time the response of our rotating gravitational gradient sensor to a 
static gravitational gradient field.    To verify that the sensor response 
is a result of gravitational excitation,  the sensor was subsequently cali- 
brated with the dynamic gravitational gradient generator.    The results 
of this calibration test verified that the sensor was indeed responding 
to gravitational gradient excitation. 
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The static gradient test consisted of exciting an operating ro- 
tating gravitational gradient sensor by two   80 lb   cylindrical lead 
test masses,  each at a radial distance of   26 cm   from the center of 
the rotating gravitational gradient sensor but on opposite sides.    In 
this condition the gravitational gradients of the two masses add. 

Sensor scale factor as determined by the static gradient test 
was    18 ±   6 nV/E. U. , while the dynamic calibration test indicated 
a scale factor of   16 nV/E. U.    The noise level in the static tests was 
approximately   200 E. U.,  primarily as a result of   FM   transmitter 
noise.    The transmitter has since been redesigned, and the new de- 
sign is described in this report. 

In line with the above discussion, the design of the vertical 
gradiometer is sufficiently flexible to accommodate modifications 
which may prove necessary as a result of later experimental work. 

B-2 

 -» mam 



SECTION   II 

BASIC CONCEPT 

The basic concept of the rotating gravitational gradient sensor 
is as follows.    If a system of proof masses is rotated in the static 
gravitational field of an object,   the gravitational force gradient of 
this field will induce dynamic forces on the proof masses with a fre- 
quency which is twice the rotation frequency of the system,  while in- 
ertial effects caused by accelerations of the proof mass mounting 
structure will induce forces with a frequency at the rotational fre- 
quency.    The strength and direction of the gravitational force gradient 
can be determined independently of the inertial forces by measuring 
the amplitude and phase of the vibrations induced in these proof masses 
at the doubled frequency.    Analysis shows that the sensing of the gravi- 
tational gradient will still occur if the proof mass system is in free fall. 

More specifically, the proof mass system used is a system of 
masses coupled together with springs in a geometry which becomes a 
rotating differential accelerometer. 

Because of the tensoral nature of the gravitational gradient 
field,  there are several different sensor geometries which could be 
used (see Figure B-l). These geometries fall into two basic types, 

• Radial sensors — sensors which sense differential 
forces toward and away from the sensor axis of ro- 
tation (Figure B-l (a),   (b)). 

• Tangential sensors   —   sensors which sense differ- 
ential forces in directions perpendicular to the 
sensor radius (Figure B-1(c),   (d)). 

The basic advantage of the tangential type of sensor over the 
radial is that the centrifugal reactions of the sensor masses are per- 
pendicular to the vibrational direction of the spring,  reducing any 
angular velocity-resonant frequency interactions of the sensor. 

The pattern of tangential forces which occur at twice the rota- 
tional frequency is shown in Figure B-2 and is given by the following 
equations 
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Fig. B-l.     Possible sensor configurations. 
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Fig. B-2.    Phase of 2 w tangential vibrations. 
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=   F. 3 
2 

GM 

R3 
mr sin Z cot (1) 

=   F -I GM 

R 
mr sin 2 cut (2) 

the positive forces are defined to cause positive (ccw) rotation and 

m =   sensor end mass 

a) =   sensor rotation speed 

r =   sensor radius 

-7—5— =   radial gradient of the gravitational force field. 
, ' R^ 

These forces are extremely small.    For an input of   GM/R    = 
10" ' sec"^,  a sensor end mass of   200 g   and sensor radius of   2.5 in. 
(6.35 cm),   these forces are    1.92 x 10"" dyn each.     The equivalent 
nonresonant angular displacement of the sensor arm in a sensor ro- 
tating at   15 cps is   ~   10"^ rad.    If the sensor is operated at reso- 
nance,   these displacements of course will be increased by.a factor of 
Q   over the nonresonant response. 

Tangential sensors may be further subdivided into two types, 
depending on the method of coupling between the end masses.    The 
first type is the tuning fork,   or cruciform,  type of sensor shown in 
Figure B-3. 

The coupling between the masses occurs in the connecting 
radii between the arms.    The mode of vibration produced by the gravi- 
tational gradient forces is shown in Figure B-4(a).   Figures B-4(b) and 
B-4(c) showtwoothermodes of vibration which can occur in this type 
of design. 

Although this type of sensor can be used for measuring gravi- 
tational gradients in free fall and for measuring horizontal gradients 
on the earth,  it is not satisfactory for measuring vertical earth gradi- 
ents.    When the cruciform sensor is operated vertically,   the vertical 
reactions of the supports generate forces of   8 x 10-> dyn in the sensor 
translational mode at the frequency of rotation.    Although response to 
this force theoretically could be filtered out,   since it is not at the 
sensor gravitational response frequency, nonlinearities in the sensor 
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Fig. B-4.    Sensor vibrational modes. 
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pickoff and electronics will generate harmonics which are at the sen- 
sor response frequency.    The nonlinearity of the electronics therefore 
would have to be held to approximately 1 part in   10^    to hold this 
noise smaller than a gradient signal of   GM/R^   =    10'^ sec"^ (1 E. U. ).. 
This linearity requirement cannot be achieved with present electronic 
techniques. 

The second type of tangential sensor,   the torsionally resonant 
gradient sensor,  is shown schematically in Figure Br 5.   Itconsistsof 
two rigid mass quadrupoles oriented perpendicular to each other and 
connected at their centers with a torsionally flexible spring.    When 
the sensor is rotated in the gravitational field of a test mass,   the 
forces which occur between the quadrupole masses and the test mass 
produce torques which deflect one quadrupole with respect to the other, 
with restraint applied by the torsion spring. 

The major advantages of this type of sensor over the cruciform 
type are 

1. Use of a flexural member between the rigid mass 
quadrupoles,  which is torsionally flexible but 
laterally rigid,  assures a single mode of vibration 
which will be excited by gravitational gradients, 

2. Use of a single flexural member coupling the 
quadrupoles allows the use of a single transducer 
and eliminates the need for matching of transducer 
elements. 

3. A centrally located flexure with strain transducer 
located on the flexure itself provides the maximum 
strain available and consequently yields the maxi- 
mum signal size. 

This sensor will be made of low conductivity materials,  with the cen- 
tral flexure made from fused quartz. 

The analysis of the gravitationally induced forces is essential- 
ly the same as that for the forces produced in the cruciform type sen- 
sor.    The  sensor masses see gravitationally induced forces at fre- 
quencies which are    1,   2,   3,   ...  etc.,  times the rotation frequency 
S2;   the magnitude of the   n^1   harmonic is proportional to the   n^1 

order gradient of the gravitational potential field. 

Calculation of the torques on each of the quadrupoles results 
in cancellation of the fundamental rotation frequency and the third 
harmonic responses; the second harmonic torques   T   are found to be 
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3GMmr2 

R3 
sin Znt (3) 

whert   (2GM/R   )   is the radial gradient of the gravitational force 
field,    m   is the end mass of the quadrupole,  and   r   is the half-length 
of the quadrupole.    Furthermore,   the angular acceleration field pro- 
duced is given by 

T        3GM      mr __. 3   CM ,_. ,.. a   =   -r- =    j-     j-   sin 2J2t   =   y  —-^   sin 2nt (4) 
R       2mr R 

where   I   (the quadrupole inertia)   =   2mr   .   If .the sensor is made 
torsionally resonant at   2£2,   the angular deflection of the quadrupole 
from its neutral position is given by 

o          aQ            3GMQ       .     ,-,. /c. 9   =    r-   =    ,   .,     sin 2£it (5) 
(2Si) 8RJn^ 

where   Q   is the quality factor of the sensor head and associated 
electronics. 

The angle   9   is extremely small.    Surface gradients produced 
by the earth   (3000 x 10"° sec"^)   will produce angular responses of 
«   5 x 10"8 rad. in typical torsional sensor designs (Q = 300, J2 =   80. 6 
rad/sec),  while useful threshold signals of   10^ sec"2   produce angular 
responses of   «10"" rad. 

It is now necessary to transduce this mechanical motion into 
an electrical signal. Various types of signal transducers were con- 
sidered in detail; among these were 

1. Piezoelectric strain transducers 

2. Magnetostrictive transducers 

3. Capacitive transducers. 

It was finally decided to continue the use of piezoelectric strain trans- 
ducers (which were used in the cruciform sensors). 
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This is accomplished by using a flexural pivot as the torsional 
spring and affixing the strain transducer to one of the flexural spring 
leaves.    An experimental model of this type of torsional sensor is 
shown in Figure B-6. 

The voltage output from a piezoelectric transducer affixed to 
a flexural pivot is easily calculated from basic geometric considerations. 

Consider one leaf of a flexural pivot which is being torqued 
through a total angle   290   (see Figure B-7).   The leaf has a length   \ 
and a thickness    2 c.    When the leaf is fully flexed,  it approximates 
an arc segment of a circle with a radius of curvature    p (provided 
0O   is very small).    If we consider the centerline of the leaf as a 
neutral section,   its length remains   X.   and is unstressed.    However, 
the length of the top surface of the leaf is now   290(p + c)   and the ten- 
sile strain at this surface is 

1 

€     = 

20 (p + c) - 29  p o r or 29 c o 
(6) 

From   (5),   however. 

_3   GMQ 
2 „3   2   ' R  a) n 

(7) 

where the resonant frequency  w     =    25^; therefore. 

€     = 
3GMQc 

vo3   2 
\R  w 

n 

(8) 

However,   the gauge factor of the transducer is   cr  V/unit strain. 
Therefore,   the voltage output of the sensor is        ° 

BQco- 

X« 
n 

(CM' 
V/gauge (9) 

where   (GM/R  )   is the gravitational force field gradient. 
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Fig.  B-6.    Torsionally resonant sensor experimental model 
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Fig. B-7.    Flexural leaf bending. 
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The signal-to-noise energy ratio in a torsionally resonant 
gradient sensor is given by 

S/N   = 
Ic/02 

n  o 
2 kT (10) 

here    kT   is the thermal energy in the torsionally resonant mode and 
I   is the total sensor head inertia.    However.    9     has been established 

'      o as 

2 
2 2 u)       R 

GM 
3 (H) 

n 

Combining   (10)   and   (11)   and solving for   (GM/R  ),   therefore,  we ob- 
tain 

GM       2   (S/N)1/2 co      fzkT}l/Z 

T,3   
=   3 Q (12) 

2 2 
Q   =    (TOO  /2)   and   I   =   4mr      =    mi   ,  and therefore n 

GM        4  (S/N)1//Z   fzwÄ 1//2 

3'  =   3        TI ' R 
m 

(13) 

here   T   is the system integration time,    I    is the center-to-center 
length of the quadrupole,    m   is a   single end mass of the quadrupole, 
and   (GM/R   )   is the minimum gradient which can be detected at the 
specified signal-to-noise ratio. 

For the proposed torsional sensor   m = 200 g,    i    =    12. 7 cm, 
and if we assume    T   =    100 sec,   S/N   =    1,  and   kT   =    4xl0"21J = 
4 x 10 ergs,   the threshold thermal noise gradient will be 

GM 

R3 
5.33 x 10"11 sec"2 » 0.05 E. U. 

This threshold can of course be improved by the use of longer 
integration times. 

(14) 
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SECTION   III 

TORSIONALLY RESONANT GRADIENT SENSOR DESIGN 

SYSTEM DISCUSSION 

A block diagram of the complete sensor system is shown in 
Figure B-8.   T. c i^i-am ope rates in the' following manner. 

The sensor head responds to the gradient of the gravitational 
force field through which it rotates.    This response ccüsists of mi- 
nute torsional oscillations between the mass quadrupoles at twice the 
sensor head rotation frequency.    These oscillations are  detected 
through piezoelectric strain transducers affixed to the bending por- 
tion of the supporting flexure.    The transducer signal is amplified 
through the low-noise preamplifier and is then used to drive the FM 
transmitter. 

All of the above items rotate with the sensor head in an evac- 
uated package supported by means of a separate three-axis magnetic 
suspension system. 

The sensor head package is rotated at exactly one-half its 
resonant frequency by means of an asynchronous motor drive and 
servo system controlled by a precision reference oscillator.    Sensor 
speed is monitored by a photoelectric pickoff and compared with the 
oscillator; drive oscillator voltages are then adjusted to maintain 
proper sensor speed. 

The speed pickoff signal is also used as a frequency and 
phase reference for the sensor output signal which has been demodu- 
lated in the receiver and fed into the phase sensitive detector.    Here 
the signal is filtered,   matched against the reference voltage for fre- 
quency and phase,  and time averaged over any specifically chosen 
time constant.    A meter reads the voltage at the operating frequency, 
at any phase angle,  and over any chosen integration time. 

The signal amplitude read on the meter indicates the size of 
the gradient, while signal phase with respect to the speed reference 
indicates the direction of the gradient nnomaly. 
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B. DETAILED DISCUSSION OF DESIGN 

Mechanical 

a. Sensor Head Assembly 

The sensor head assembly is shown in Figure B-9.   It 
consists of a central quartz flexure stack which supports two pairs of 
seismic masses.     This central subassembly is in turn supported by 
two additional matched flexures to a solid supporting structure made 
up of four posts and two endplates.    The central subassembly is non- 
metallic,   to prevent interaction with magnetic gradient fields.    The 
seismic masses are manufactured from a suspension of tungsten in 
plastic, maintaining the high density required for low thermal noise 
(see eq.  (13)) and the high electrical resistance needed to eliminate 
eddy-current noise. 

One or more barium titanate strain transducers are affixed 
to the flexing members of the central support.    Torsional vibration 
between the two sets of masses therefore produce tensile and compres- 
sive strains in the transducers,  and voltages are developed across the 
transducers.    These voltages are then fed into the preamplifier. 

b. Support and Drive System 

The assembled mechanical system is shown in Fig. B-10. 
Here the sensor head assembly has been mounted in a vacuum chamber. 
The resonant circuit,  preamplifier,  and   FM   transmitter are also in 
this chamber but have been omitted in the drawing for clarity.    The 
chamber is attached to a shaft supported radially by two soft iron pole- 
pieces which are magnetically centered by the radial positioning stators. 
In addition,   the longitudinal position of the assembly is sensed by means 
of photocells No.   1 and No.   2,  and servo-adjusted magnetically by the 
longitudinal positioning stator.    The sensor rotation speed is detected 
by means of the speed monitoring photocell,  and maintained by correc- 
tion torques from the drive motor stator.    The entire sensor system 
shown is inside a second vacuum chamber to eliminate windage on the 
rotor.    The rotor and shaft assembly is dynamically balanced while 
supported in its own suspension to   0. 000005 in.  center of mass runout. 
Bearing elasticity is held constant in the radial directions to within 0. 1%, 

The magnetic support system will be subcontracted to the 
Cambridge Thermionic Corporation,  a company specializing in com- 
rin^rcial magnetic support systems. 
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Fig.  B-9.     Torsional sensor head assembly. 
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Electronics 

a. Preamplifier-Trans mitter 

The transducer signal is preamplified,  and trans- 
mitted from the rotating sensor head to the stationary receiving equip- 
ment by means of the circuit shown in Figure B-ll.   This transmitter 
has an input impedance of   22 Mf2   and a front end noise of   30 nV(rms) 
when the data are integrated over a    100 sec time constant. 

In our experimental dynamic gradient calibration tests the 
strain gauge signal is fed directly into the Princeton Applied Re- 
search Lock-In Amplifier where the noise level is less than   4 nV. 
The primary reason for this low noise figure is that this  preamplifier 
is tube type rather than transistorized.    It is estimated that additional 
design work on the preamplifier-transmitter should reduce the noise 
to less than   8 nV   (0.4 E. U.  equivalent). 

b. Receiver 

The   FM   receiver circuit is shown in Figure B-12.    It 
consists of a tuned antenna and standard frequency modulation recep- 
tion techniques with four-stage   i. f.    amplification and battery power 
for low noise operation. 

c. Signal Processing 

The demodulated telemetry signal is then fed into a 
phase sensitive detection system such as the Princeton Applied Re- 
search Lock-in Amplifier Model HR-8.    The amplitude and phase of 
the desired frequency component read by the lock-in amplifier are 
proportional   to the magnitude and direction,   respectively,   of the gravi- 
tational field gradient. 

d. Frequency Reference 

A General Radio Frequency   Synthesizer,   Type 1162, 
is used as a frequency reference for the asynchronous drive system. 

e. Asynchronous Drive System 

The asynchronous drive system of Figure B-13isused 
to rotate the sensor at a precise angular velocity without introducin<» 
coherent electrical noise.    This system compares the rotation speed 
of the sensor with the reference frequency and maintains the proper 
speed through a heavily damped servo control on the motor drive 
input power (see block diagram.   Figure B-14). 
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Fig.  B-12.   Telemetry receiver. 
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SEC TION   IV 

NOISE    SOURCES 

Our tests with rotating and nonrotating sensors have revealed 
a number of noise sources,   which have been investigated.    They are 

e Internal mechanical noise generation resulting from 
fabrication errors 

o Mechanical vibrations   applied to the sensor mount 
which are generated by drive motors,   air turbulence, 
and acoustic and vibrational sources external to the 
sensor and drive 

G» Differential forces    applied directly to the sensor 
head which arise from coupling of the sensor arms to 
acoustic noise,   turbulence in the residual air of the 
vacuum chamber,   magnetic eddy current forces,   and 
light pressure 

e Pickup in the transducer leads and sensor electronics 
from electromagnetic coupling to stray electrostatic 
and magnetostatic fields, and to ac induction fields 
from the bearings and drive motors 

o Thermal noise. 

A. INTERNAL MECHANICAL NOISE 

Internal mechanical noise is potentially the most limiting of the 
several types of noise associated with the operation of a rotating gravi- 
tational mass sensor.     Thermal and external mechanical noise can 
theoretically    be separated from the gravity signal because it is random 
and thus phase-incoherent.    Other types of nongravitational noise,   such 
as acoustic and electromagnetic,   can be eliminated by shielding.    How- 
ever,  internal   mechanical noise resulting from center of mass mis- 
alignments in the sensor and bearings is phase-coherent and at the fre- 
quency of sensor gravitational response (Zf2). 
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Figure B-15 is a schematic representation of the rotating torsion- 
al gravitational mass sensor and its associated spin mechanism.    The 
principal construction involves two rigid arms mounted perpendicular 
on torsional springs.    In operation,   they are rotated at constant angu- 
lar speed,  and the relative motion responds ideally to the local gravi- 
tational gradient and rejects external accelerations.    Also shown in 
the figure are the basic mechanical elements associated with rotation 
of the mass sensor.    A combination of unbalance in these elements 
gives rise to internal mechanical noise. 

There are two types of internal mechanical noise.    One type 
is a result of deviations in rotational frequency,  and is coupled into 
the sensor response through mismatching in the resonant frequencies 
of the two support torsional springs.    T>\is noise is reduced to accept- 
able levels in two ways: 

1. The high inertia of the sensor head and heavy damping 
of the asynchronous drive maintain a 2J2 input torque 
variation of less than   0. 01 dyn-cm. 

2. The mass quadrupole inertias are matched to their 
individual support springs so that any remaining torque 
variations produce the same deflections in each of the 
sensor arms.    Matching can be held within   0. 01%. 
Therefore,  the total residual torsional noise is 
Tres   =   0.01 xlO"4   =    10"6   dyn-cm   and the equiva- 
lent gradient signal produced by this torque  F  =    Tres/l = 
10-6/200(40.3)   =   0. 124 x 10-9 sec"2. 

The other type of internal mechanical noise is generated even 
if constant angular speed of the housing is maintained.    This is the re- 
sult of the combination of the following three unbalances. 

• Sensor unbalance   h   —  Relative deviation between the 
geometric center of the sensor arm and its center of 
mass (percent of arm length) 

• Rotor unbalance   e   —    Deviation between the rotor 
geometric center and the center of mass of the spring 
(percent of arm length) 

• Bearing unbalance c — Circumferential variations in 
the stiffness of the bearing-shaft combination (percent). 

It is well known that when the geometric center and the center 
of mass of a rotating body do not coincide,  the geometric center will 
describe a circle in space.    The radius of the circle will be defined by 
the frequency of rotation relative to the natural frequency of the shaft- 
suspension system.    However,  if there is any bearing stiffness unbalance 
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Fig.   B-15. Schematic representation of rotating (torsional) 
gravity sensor and associated spin mechanism. 
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such that the restoring iiorce is not constant as a function of circum- 
ferential position,   the path described will be elliptic rather than circu- 
lar.    An elliptic motion can be decomposed into the sum of two circu- 
lar motions:   one positive and of large amplitude,   and one negative 
(opposite to the shaft rotation) whose amplitude is proportional to the 
stiffness unbalance (see Figure B-16(a)). 

The component of negative circulation at   1   f2   converts into 
2n   excitations in the rotating coordinate system of the sensor (Figure 
H- '. v (c)) and can couple into the gravitatioral gradient excitation through 
the sensor fabrication errors   h   and   e. 

The amount of coupling produced by the negative circulation 
forces on the sensor arms is a function of the sensor unbalance.    An 
ideally balanced sensor will not respond to such forces.     The transla- 
tional force is introduced to the arm through its geometric center.    If 
the centers of mass do not coincide,   the applied force resolves into a 
translational force at the center of mass plus a torsional couple.   Thus 
the equivalent gradient noise     T     is also a linear function of the devia- 
tion between the sensor center of geometry and center of mass.    The 
equation for the equivalent gradient noise   re   resulting from sensor 
and rotor construction errors has been derived as 

4-   €he n2,   fi   > n ; .in n 

i .h. n2^) , n <na. 

(15) 

We see that the internal mechanical noise generation in a ro- 
tating gravity sensor is directly proportional to the product of the 
three unbalances.    In addition,   for the case of   12      <    n,   the noise 
is independent of rotational speed and proportional to the square of the 
suspension natural frequency.    However,  such low frequencies are 
difficult to achieve in practice.     The second case (ßn >   f2)   is more 
applicable to our discussion.    Here,   the noise is a function of rotation- 
al speed,   and attenuates by the ratio   (J2/f2  )  . n 

Therefore,  by maintaining low rotational speed (15 Hz),  and 
at the same time providing a high suspension stiffness,   we may achieve 
very reasonable balancing specifications.    The magnetic bearing manu- 
facturer has indicated that a suspension natural frequency value as 
high as    150   Hz   is easily attainable.    Using this value,   eq.  (15)   is 
plotted in Figure B-17 for the case of  n    >   n (and for a bearing aniso- 
eiasticity of   0.01%). n 
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Fig. B-I6(a). 
Translational motion de- 
composes into right- and 
left-hand circulation. 

DMI-4 

Fig.  B-I6(b). 
Positive circulation produces 
no vibrational effect in rotat- 
ing reference frame. 
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Fig.  B-16{c). 
Negative circulation in- 
duces a vibrational mode 
forcing function at twice 
the frequency of rotation. 
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The ultimate design goal for this noise source is   0. 3 E. U. 
The balancing requirement    dictated by this sensitivity goal is shown 
in Figure B-17 as 0. 03% for  each of the three errors (h,  e,  and   e) 
in the system. 

B. EXTERNAL VIBRATIONS 

It is known from previous experience that the coupling of ex- 
ternal acoustic noise to the sensor head will be negligible even at 
the very low signal levels (2 nV)   attained during gravitational cali- 
bration experiments,  provided that the sensor is operated in a moder- 
ate vacuum (0. 010 Torr).    Therefore,  it does not appear to be neces- 
sary to strive for ultrahigh vacuum capabilities in our bearing and 
chamber designs.    However,   this vacuum level is not low enough to 
prevent differential excitation of the sensor when it is rotated inside 
a stationary vacuum chamber,  as outlined in Section IV-C. 

Other mechanical vibrations from the operational environment 
of the gradiometer system will depend on the particular application. 
In laboratory operation,   no problem has been encountered.    In air- 
borne application,  for example,  vibration isolation techniques must 
be employed. 

C. DIFFERENTIAL FORCES 

Eddy current forces can be generated in the sensor itself only 
by the motion of conductive arms through a. static magnetic field.   The 
eddy current force    F   on a conductor of characteristic dimension     i 
moving at a velocity     v     through a static magnetic field   B   is given by 

F   =   B2i2 v/R (16) 

where .R   is the resistance of the path through the conductor.    This 
resistance is difficult to calculate accurately; however,  if we assume 
that the end mass of the sensor has a resistance path of a few centi- 
meters and use the resistivity of aluminum,   which is    3 x 10"° cm, 
the path resistance can be estimated at about   3 x 10""   ß.    With a 
stray magnetic field of   5 G   and a sensor arm velocity of about 
2m/sec   at   50 rps,   the calculated eddy current force is about   30 dyn, 
which is many orders of magnitude higher than the calculated gravi- 
tational force level of about   0. 6 x 10"^ dyn.    This calculated force 
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level is a static force; its predominant effect on the sensor is to ap- 
ply a retarding torque rather than generating noise.    However,   any 
asymmetries in the magnetic field would produce dynamically vary- 
ing forces in the sensor arms at the rotation frequency and its 
harmonics. 

For this reason,   the present sensor design consists of non- 
conductive materials,   such as quartz,   etc. ; such methods eliminate 
eddy current forces. 

It has been demonstrated experimentally that the sensor re- 
sponds to light pressure when a beam is directed at one side of the 
rotating sensor. 

The force of light pressure on a reflecting object is given by 

F   =   2P/c (17) 

where   P   is the light power and   c   is the velocity of light.    The , 
strobe flash unit used produced a beam intensity of   1. 2 x 10° Im/m 
at   1 m   distance.    The experiments were carried out at a distance of 
approximately   1 ft,  with a sensor arm area of   8 cm^.    The force on 
the arms is calculated to be about   10"^ dyn,  or about   20 times the 
calculated force -due to the earth's gravitational gradient.    Light pres- 
sure as a noise problem is completely eliminated when an opaque 
vacuum chamber is used. 

The differential rotation of the sensor and chamber walls 
creates turbulence in the residual air in the chamber,  which results 
in the generation of an appreciable amount of noise.    This turbulence 
noise source is eliminated in the design by operating the sensor in a 
corotating vacuum chamber. 

D. PICKUP 

It has been found that rotation of the wire leads on the capaci- 
tive strain transducers through an electrostatic field can generate 
electrical pickup.    Electrostatic fields observed in our test setups 
were found to be generated by static charges left on the teflon bumper 
plates when the apparatus was handled. 
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The removal of the teflon plates and the use of electrostatic 
shielding, twisted leads, and differential preamplifiers reduced the 
noise level from electrostatic pickup well below levels produced by 
other sources of noise. 

When the sensor lead wires rotate through a diverging mag- 
netic field,   they generate induced currents which will depend to a 
large extent on the geometry of both the wire loops and the magnetic 
field. 

The induced emf V from magnetic pickup in a wire loop of 
area A rotating at a speed ß through a constant magnetic field B 
perpendicular to the loop is given by 

V   =   B Aß sinß t . (18) 

This output is at the rotation rate,   of course; however,   if two loops 
were rotating through an asymmetric field,  a portion of this voltage 
would be proportional to the gradient of the magnetic field and at 
twice the rotation rate. 

The residual flux level in our prototype magnetic bearing has 
been measured as approximately   5 G   at the position of the rotating 
sensor.    As a rough estimate,  let us assume that the area of the loop 
in the leads is    0. 1 cm^   and that the asymmetries will produce   2 n 
outputs which are 1%    of the   1 n   outputs.    At a rotation speed of 
15   rps,   this will give a coherent noise level of approximately   10"°V 
(equivalent to   «   0. 3 E. U. ). 

Electromagnetic pickup from the drive fields of the motor re- 
presented a potential noise source.    However,  experience with noise 
tests on rotating sensors has shown that this is not a major problem. 
With synchronous drive at high drive levels it is possible to see the 
effects of the drive fields; when the drive voltages are decreased to 
just that necessary to maintain synchronous rotation, however,   the 
noise level decreased to that neen under free rotation operation.    In 
any case,   the use of the phase locked asynchronous drive is found to 
eliminate electrical pickup noise from the drive motor. 

E. THERMAL NOISE LIMITS 

When all the above forms of noise are eliminated,   the funda- 
mental sensitivity is determined by the thermal noise limitation.    In 
practice,   this limit can never be reached, but many systems can ap- 
proach it very closely.    This is especially true of low frequency de- 
vices,  since the electronics available in this region has been highly 
developed and will contribute only a few degrees of extra equivalent 
noise temperature to the physical temperature of the sensor. 
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Near thermal noise limited sensitivity has been demonstrated 
repeatedly in the program for a number of the sensor-transducer- 
electronics configurations.    The sensitivity calibration is accomplished 
using dynamically generated gravitational gradient fields produced by a 
pair of rotating   1 kg   masses.    A torsional sensor was calibrated using 
the low noise preamplifier of the HR-8 Lock-In Amplifier,   and the noise 
level measured for a 100 sec integration time waa found to be equivalent 
to a gravitational gradient threshold of   0. 2 E. U.  while the thermal noise 
limit is    0. 05 E. U.  (see eq.  (14)).    In this case the thermal vibrations 
in the sensor were contributing about one-fourth of the observed noise. 

» 

F. ESTIMATED ACHIEVABLE NOISE LEVEL 

From the above discussion we can now tabulate the noise sources 
and estimate the total residual noise in the system (see Table B-I). 

TABLE B-l 

Estimate of Noise Limited Threshold 

j                   Noise Type Caused by Amount Comments 

Internal Mechanical Z u torsional input 0.1 x 10"9sec"2 Section IV-A 

Translational bal- 
ancing 

0.3 x 10  7sec Section IV-A 

I       Eddy Current Sensor magnetic 
interaction 

Negligible Sensor is            \ 
nonmetallic 

!      Electrical Static electrical 
fields 

Negligible Sensor is elec- 
trically 
shielded           j 

j      Magnetic Pickup Magnetic interac- 
tion with wires 

0.3 x 10'9sec'Z Section IV-D    | 

j      Acoustic Air turbulence Negligible Sensor is in 
corotating 
vacuum            j 
chamber          j 

t      Electronics Preamplifier 
noise 

0.4 x 10"9sec"2 Section III-B- 
2-a                       i 

Thermal Noise Temperature of 
sensor and 
transducer 

0.2 x 10"9sec"2 Section IV-E 

1 

Total 1.3 x 10"9sec"2 Sum (worst       | 
case)                j 

0.6 x 10'9sec"2 rms                       j 
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TESTING PROCEDURES 

1. Static Balancing 

In order to reject signals which are generated in interactions 
between sensor asymmetries and vibrational noise inputs,   the asym- 
metry coefficients h,  e,   and   e    outlined in Section IV-A must be re- 
duced by mechanical balancing of the sensor-bearing assembly.   This 
will be accomplished by introducing calibrated torsional and trans- 
verse vibrational signals into the sensor head and adjusting the inertia, 
center of mass,  and bearing parameters of the sensor arms to pro- 
duce a null output from the transducer.    The sensor head will also be 
dynamically balanced using commercial balancing practices. 

2. Calibration 

For static calibration we will use a generator of dynamic grad- 
ient fields.     We have constructed and successfully operated such a 
generator in prior experimental research on gravity sensors.    Our 
gravitational gradient field generator consists of a flat aluminum 
cylinder    14 cm   in diameter,  with four holes which can be filled with 
slugs of different density to create a rotating mass quadrupole mo- 
ment (see Figure 18).    The generator is operated at sensor rotational 
frequency (15 Hz).    Because of the bisymmetric mass distribution, 
the dynamic gravitational gradient fields generated are at a frequency 
of twice that of rotation.    The dynamic field thus simulates the reson- 
ant response of the sensor,  which also responds at twice rotational 
speed. 

The sensor will be mounted inside its evacuated vacuum cham- 
ber,  the chamber will be suspended from the ceiling, and the calibra- 
tor will be placed beneath or beside the chamber.    An iron shield will 
be used for acoustic and magnetic isolation.    This has been found to be 
adequate in our previous experiments with dynamic gravitational fields. 
Data can be taken with four different mass distributions varying from 
0   to   1000 g   with separation distances between sensor and calibrator 
varying from   5   to   ?0 cm.    Calibration procedure will therefore be 
capable of accurately demonstrating the sensitivity and threshold of 
the sensor. 
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Fig.  B-18.     Dynamic gravitational gradient field generator. 
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APPENDIX   C 

GRAVITY GRADIOMETER COMPUTER MODEL FÜR 
SIMULATED GRADIENT CONTOUR MAPPING 

(Prepared by David Berman) 
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Considerations for gravity gradiometer application have established the need for predicting gradiometer re- 
sponse to mass distributions of particular interest. A digital computer program has been developed to simulate the 
rotating gravitational mass sensor, and to map the gradient contours of the gravitational field created by an arbi- 
trary mass distribution. This analysis demonstrates the interaction of the gradiometer with seond and higher 
order gravitational gradients. The information about the mass distribution of an object was found to increase with 
the g -ent order. Considered in this study is the "cruciform" mass sensor, now being developed by Hughes 
Research Laboratories. This rotating gradiometer is theoretically capable of measuring the second, sixth, tenth, etc., 
order gradient. We are presently engaged in laboratory experiments which combine with these computer results 
in the understanding of gradient-sensor interaction. This paper gives a basic introduction to gravitational tensors, 
followed by a mathematical formulation of the gradiometer model. Computer results are included which demon- 
strate the gravitational gradient contours associated with some selected mass distributions. 

INTRODLT.TION 

' I VHE gravitational field of an object can provide as 
*■ with knowledge of many properties of its mass dis- 

tribution.1-3 Although the gravitational potential itself is 
not direct!}' measureable, the gradients of the field are 
measurable. The first order gradient of the gravitational 
potential field is simply the gravitational force; higher 
order gradients are complicated tensors of high rank. 

A gravitational gradient sensor measures directly the 
various gradients of the gravitational potential and thus 
enables reconstruction of the gravitational potential dis- 
tribution. Presert research indicates that the measure- 
ment of higher order gravitational gradients provides in- 
creasingly more information about the mass distribution 
of an object, and thus more accurate determination of the 
gravitational field detail. 

Future application considerations for gravity gradiome- 
ters as well as laboratory demonstration have created a 
requirement for predicting the response of a gradiometer to 
gravitational fields of particular interest. For example, 
geodetic applications require the prediction of gradiometer 
response to the earth's gravitational field. Similar require- 
ments are presented in our laboratory investigations of 
gradient jensors. For these reasons, a general computer 
program has been developed to map the contours of 
gradiometer response for an arbitrary mass distribution. 

In this paper we demonstrate the contour mapping of 
gravitational gradients which are measurable with a gravi- 
tational gradient sensor. We have constructed a digital 

* This work was partially supported by the Air Force Cambridge 
Research Laboratories, Contract No. AF 19(628)-6U4 and the Air 
Force Office of Scientific Research Contract N'o. AF 49(638)-lS36. 
The views do not necessarily reflect those of the Air Force. 

1 R. L. Forward, "Mass Detector," Hughes Research Laboratories 
Internal Report RL-59 (19 March 1962). 

• R. L. Forward, "Gravitational Mass Sensor," Proc. 1963 Symp. 
on Unconventional Inertial Sensors, Farmingdale, New York (18-19 
November 1963), pp. 36-«). 

»R. L. Forward, Bull. Am. Phys. Soc. 9, 711 (1964). 

computer model of the rotating cruciform gravitational 
gradient sensor under development at the Hughes Re- 
search Laboratories. The computer program can map the 
gravitational gradient interaction for an arbitrary mass 
distribution and an arbitrary gradiometer orientation. 

THE GRAVITATIONAL POTENTIAL 
AND ITS GRADIENTS 

According to Newton's law of gravitation, a mass M 
characteristically sets up a field in the space around it, 
which interacts with other masses. If a small test mass m 
is placed at a distance R from the first mass, it is found that 
the system has a potential energy given by 

^-{GMm/R), (1) 

where C»6.67X10~11 m3/kg sec2. Strictly speaking, the 
above formula applies only to a spherically symmetric 
mass, but the concept can be extended to more compli- 
cated distributions of mass by simply adding the contribu- 
tions of each part of the distribution. 

The gravitational potential is not directly measurable 
since the point of zero reference can be changed arbif. rily. 
Differences in potential energy can be measured by allow- 
ing the masses to attract each other and measuring the 
change in kinetic energy. 

The first order gradient of the potential is simply the 
gravitational force field. Since the inertial mass and the 
gravitational mass are the same for all bodies, tke gravi- 
tational force field is equivalent to a gravitational accelera- 
tion field. 

1 1 
ak=—Fk~ V*« 

m m 

 IGM/tf+f+Wixw) (2) 
in Cartesian coordinates 

" [— {GM/F?), 0, 0] in spherical coordinates. 
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This accelerating force field can be detected by any force 
or acceleration measuring device such as an accelerometer 
or gravity meter, provided the center of mass of the sensing 
device and the object being investigated are not moving 
with respect to each other. The second order gradient of 
the potential is the gravitational force gradient described 
by the symmetric tensor 

f d2«     d-4>     d-<t> 

4>    1 
r0-7.v,—— 

m    m 

dxdx dydx dzdx 

dfy d-4> &* 

dxdy dydy dzdy 

dfy d2(t> d2* 

(3) 

dxdz    dydz    dzdz 

If we have a simple mass to measure, by proper orienta- 
tion of the sensor, the measured gravitational force 
gradient tensor can be simplified to 

I\,= 
r„ 0 0 
0 rt, 0 
0 0 r» 

(4) 

which consists of the radial gravitational force gradient 

Trr^+UGM/m, (5) 

and the trangential gravitational force gradient 

rM—(GJf/iP). (6) 

The gravitational force gradient is best known to us as 
the tides on the earth due to the gravitational field of the 
sun. Since the amplitude of the gravitational force due to 
the sun varies as the inverse square of the distance from 
the sun, and since the direction of the force vector varies 
with angle, the gravitational force due to the sun varies 
from point to point on the earth. If we look at these force 
vectors from the viewpoint of the center of mass of the 
eartlvwe see that after subtracting out the center of mass 
motion, we are left with a radial tension and tangential 
compression. It is important to realize that the effects of 
the slight angular convergence are of the same order of 
magnitude as the radial gradient effects. This will always 
be true and the angular effects must always be included 
for a correct calculation of gradients.' 

There is essentially no limit to the number of higher 
gravitational gradients that can be measured, provided 
the sensor is close enough and the object under investiga- 
tion is sufficiently dense that the interaction overcomes the 
sensor noise. These higher order gradients are complicated 
tensors of high rank, and sophisticated techniques and 
sensors may be able to obtain a great deal of information 

from them. Basically, they have the form4 

ra»...,= l/mid^/dx'dx''- ■ -dx"). (') 

By measurement of the gravitational tensor compo- 
nents, we can theoretically reconstruct the potential field 
of an arbitrary mass distribution. However, the same po- 
tential field can be produced by more than one mass dis 
trbution. Consider the well known puzzle "How to dis- 
tinguish between two hollow shells, one of gold, the other 
of silver, if their diameters and masses be alike and both 
be painted?" When there is radial symmetry, a gravita- 
tional gradient sensor will determine only the mass and 
not the distribution. 

Once the potential field is known, it may be expressed 
as a series of spherical harmonics. These h-rmonics then 
determine the multipole moments of the potential distri- 
bution. However, there is not a one to one correspondence 
between these field moments and the moments of the mass 
distribution (moment of inertia, for example). The field 
moments (monopole, quadrupole, etc.) contain combina- 
tions of mass moments, so that only the combinations are 
determined, and not the mass moments themselves. Gra- 
vitational measurements are capable of identifying the 
total mass (zeroth moment) and center of mass (first 
moment) and also components of all higher moments. 
These distinguishable higher moments must contain a 
oonspherically symmetric characteristic length. 

By going to higher order gravitational moments, in- 
creasingly more information can be obtained about the 
detailed structure of the object. Although the higher order 
moments of the mass distributions make an increasingly- 
smaller contribution to the total potential, they produce 
a larger contribution to the higher order gradient. For 
example, consider the gravitational potential field of a 
relatively simple mass quadrupole (two point masses M/2 
separated by a distance 2a) 

♦-GM/r (1+a'A1 cos««), (8) 

where 6 and r are spherical coordinates. The first term is 
the mass monopole moment of the distribution, and the 
second term is the quadrupole moment. The expression for 
the n**1 order (radial) gradient of the potential is 

^"«/^r»=.GJ^f(«!/f"+,) 

XCl+l/2(»+l)(K-f2)(a/r)t cos««].   (9) 

The ratio of the quadrupole to monopole moment [from 
Eq. (9)] is plotted in Fig. 1 as a function of the gradient 
order. For example, consider a sensor distance of five 
times the mass separation, (a/r)i=QM. In the second 
order gradient («==2), the quadrupole moment represents 

* R. L. Forward, "Rotating Gravitational and Inertia! Sensors," 
presented at AIAA Unmanned Spacecraft Meeting, Los Angeles 
(1-4 March 1965). 

* 
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only b% of the total signal. If this 6% variation could not 
be detected, the doubltt mass distribution could not be 
distinguished from a single point mass. However, in the 
sixth order gradient (« = 6), the quadrupole term is 28% 
of the amplitude of the monopole term. Thus, the higher 
order gradients indicate the fine detail in the potential 
distribution. 

GRAVITATIONAL MEASUREMENT 

The simplest way to measure gravity is to use an ac- 
celerometer and measure the gravitational force (first 
order gradient). A single accelerometer also responds to 
linear acceleration«, induced by motion of the sensor. To 
make a gradiometer to measure the second order gradient, 
the outputs of a pair of accelerometers on the ends of a 
rod could be interconnected so that the acceleration due to 
the first order gradient or external forces is canceled out, 
leaving only the differential or second order gradient forces. 
Similarly, higher order gradients could be measured by 
more complex arrangements using many accelerometers. 

A more sophisticated technique, considered in this 
paper, is that employed by dynamic (rotating) gradiome 
ters. In its simplest form, the dynamic technique consists 
of mounting one or more low level accelerometers to a ro- 
tating frame with their sensitive axes perpendicular to the 
centrifugal force.5 When this is done, the output of the 
accelerometers will be found to contain dynamic compo- 
nents at multiples of the rotation frequency which are 
driven by the various gradients of the field. The physical 
concept used is that forces are vectors (tensors of first 
rank), the gradients of forces are tensors of second rank, 
and higher order gradients are higher rank tensors. In 
general, the components of a tensor of n,h rank, when 
examined in the rotating reference frame of a sensor, will 
be found to have time-varying coefficients which are at « 
times the rotational frequency of the sensor.4 For example, 
if a simple spring mass is rotated in a static gravitational 
field, the gravitational force gradient of the field (second 
rank gravitational tensor) will induce dynamic forces in 
the sensor with a frequency which is twice the rotation 
frequency of the sensor.'■' 

The basic idea behind the operation of these sensors is 
an old one in electronics—the concept of chopping. This is 
used extensively in dc amplifiers, where the low level dc 
signal is chopped, transformed into an ac signal, and then 
amplified and measured by phase sensitive detectors. In 
the gravitational sensors, the chopping of the static gravi- 

• J. W. Diesel, AIAA J. 2,1189 (1964). 
' R. L. Forward, C. C. Bell, J. R. Morris, J. M. Richardson, L. R. 

Miller, and D. Berman, "Research on Gravitational Mass Sensors," 
Final Report, NASW-1035, Hughes Research Laboratories (15 
August 1966). 

' C. C. Bell, R. L. Forward, and J. R. Morris, "Mass Detection by 
Means of Measuring Gravity Gradients," presented at AIAA Second 
Annual Meeting, San Francisco, Calif. (26-29 July 196S); also AIAA 
Paper 65-403. 
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Fio. 1. Ratio of the quadrupole to the monopole moments of the 
gravitational potential field of a mass quadrupole. 

tational field is accomplished by physically rotating the 
sensor so that its response to the gravitational field varies 
with time.' 

The conversion of a static gravitational interaction into 
a dynamic gravitational interaction occurs because the 
rotation of the sensor creates a rotating reference system. 
From the viewpoint of the sensor, the mass to be measured 
is somehow whirling around the sensor, attracting it first 
one way and then the other. 

A practical device, employing the dynamic concept, is 
the cruciform gradient sensor, under development by 
HRL (Figs. 2, 3). This device consists of four integral 
arms, each a spring mass system (equivalent accelerome- 
ter). Gravitational gradients excite vibrational modes of 
the entire integral structure. This is a large advance over 
the early concept of coupling the outputs of individual 
accelerometers which are excited independently. The cru- 
ciform sensor is computer-simulated in this paper to study 
the gravitational field interaction. 

Figure 2 is a model of the cruciform sensor. The ele- 
mentary component is a simple spring mass rotating at 
constant angular frequency, as described above. The 
system consists of four equal masses M, each at the end of 
a cantilever spring, rotating in the vicinity of one or more 
masses «< (Fig. 2). Gravitational forces exist between 
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FIG. 2, Model of a dynamic gravitational gradient sensor 
rotating in the vicinity of a point mass. 

each arm j of the sensor and each mass m, of magnitude 

Jo-CMm/R./, .7 = 1,2,3,4, (10) 

where A», is the distance between nti and arm j. The com- 
ponent of this force which acts upon the cantilever spring 
is the tangential portion (Fa) evaluated for i=y=l as 
follows 

Fii-SFuCÄosimh/Äu), (11) 

where Rt is the distance to the center of the sensor. Sub- 
stituting (10) into (11) yields 

Fn« {GRvMmi/Rn*} sin^,. (12) 

Asssuming constant angular frequency, Q of the sensor 

f „/if- (GRtmi/Rn3) sinO/. (13) 

Evaluating 

l/Äu«- (Äos+62- 26Äo cosfi/)-', (14) 

where J*»sensor arm length. 
If (14) is now expanded binomially, the higher power 

sine and cosine terms may be replaced by their correspond- 
ing multiple angle identities. All terms of like frequency 
are then collected, and only the terms with the lowest 
power of a/R are kept in each frequency. Equation (13) 
becomes 

Fii/M (G«.//?o,)[sinfi/+ (3/2)(4/i?o) 
Xsm2n/+ (15/8) (b/RoY sin3fi/ 

+ (35/16) (Wsin4n/-|----].   (is) 

Similar expressions may be obtained for the other three 
arms. The gravitational excitation £ of a single arm is of 
the form [Eq. (15)] 

£-2/l„(^^/ar•,) sin«!)/, (16) 

where A »is a, constant of the sensor. Hence, the nth order 
gradient excites a sensor arm at a frequency of n times the 
rotational frequency. 

C-4 

Equation (16) indicates the general nature of the inter- 
action of the gravitational gradient sensor and gravita- 
tional field, although it was derived for the special case 
of a point mass. In general, the dynamic gradient sensor 
measures a combination of components in the gradient of 
the potential distribution. In the following section, the 
exact sensor-field interaction is calculated, taking account 
of this. The purpose of the analysis leading to Eq. (16) is 
only to provide a preliminary understanding of the opera- 
tion of dynamic gradient sensors. 

The response of a gradient sensor depends on its orien 
tation, and many components of the «th rank tensor can be 
obtained by" a series of sensor orientations. Ideally, the 
potential field could be reconstructed from such measure- 
ments. The sensor excitation described by Eq. (16) cor- 
responds to the radial components of the «th rank tensor 
because of the particular choice of sensor orientation. 

Figure 3 shows the actual cruciform gravitational mass 
sensor which was modeled in Fig. 2. This particular design 
utilized four basic spring-mass building blocks, and is 
capable of measuring the second, sixth, tenth, etc., order 
gravitational tensors. Other designs, using different 
numbers of arms, could be used to measure the tensors of 
intermediate orders. 

INTERACTION OF GRAVITATIONAL 
FIELDS AND SENSORS 

We next calculate the exact interaction of a rotating 
gravitational mass sensor, with the gravitational field 
created by an arbitrary mass distribution. 

It is assumed that a mass distribution ma}- be modeled 
by a three dimensional array of point masses w„ each at 
an assigned coordinate (^„yi.Zi). The sensor location is de- 
scribed by coordinates (X^Yt^o), which correspond to the 
center of gravity of the sensor. 

The derived expressions sirall be sufficiently general to 
accommodate any sensor orientation and thus shall yield 
all possible combinations of tensor components. In general, 
each of the four sensor arms is related to the coordinates 
of the center of gravity by the use of Euler angles. For an 
arbitrary orientation of the sensor (Fig. 4), the coordinates 

FIG. 3. 12.7 cm diam cruciform gravitational mass 
atnsor under development at HRL. 
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of the four sensor arms (.V;>r;,Z;) are given by 

Xj=Xo+b{cos4> cos^j —sin^ cosfl sin^), 

¥;= Fo+ft(sin(> cos^j+cos<^ cosfl sin^-j), 

Z, = Zo+Ä(sinö sin^), 

and 

J-1,2,3,4. (17) 

In the above, 8 is the angle made by the sensor axis of 
rotation with the z axis; 0 is the angular position where the 
sensor plane of rotation intersects the x-y plane. The angle 
^; describes the sensor rotation 

7=1,2,3,4, (18) 

where Q is the rotational frequency of the sensor, and 4 is 
the arm length. 

In order to determine the sensor excitation to an arbi- 
trary mass distribution, we first need to calculate the force 
on arm / of the sensor due to mass i. Actually, the tan- 
gential component of this force (in the plane of rotation) 
is required, since the dj-namic sensor responds only in the 
4 direction (Fig. 4). 

The force on arm j from mass i is expressed in vector 
notation by 

gy-GMWf/Ä^R,, (19) 

where 

Gm gravitational constant. 
Mm mass of sensor arm, 

Äi/» vector distance betwetrvi and / (20) 
- (Xi-xi)i+{Yi-yi)i+(Zj-zdV, 

and 

i,j,ksunit vectors in the x,y,z directions, respectively. 

In vector form, we may easily express the required com- 
ponent oLJJf.y The tangential direction of arm j is identical 
to the radial direction of arm j+l. Hence, 

Fii^HtH'ti+li (21) 

where Fa is the sensor driving force and tj+i is a unit vector 
describing the orientation of arm j+l 

tm~n/b)\:{Xi+i-Xo)i 
+ (F*.1-K.)j+(Zy+l-Zo)k].   (22) 

We may thus expand F,, using Eq. (22) 

F«- (CUmmi/RifKiXi-xd {Xi+l-Xo) 
+ (F,-yO(rm- Yo)+(Zi-zi){Z.+i-Zon   (23) 

PLANE OF ROTATION 

FIG. 4. Euler-angle coordinate system describing rotating'gradient 
sensor for arbitrary position and orientation. 

The total driving force on arm j resulting from all point 
masses in the array {\ total) is 

F,- (24) 

The foregoing is general for any rotating gravitational 
gradient sensor (i.e., any number of arms). The sensor 
considered here has a particular vibrational mode which 
corresponds to a combination of individual arm motions. 
The gravity sensitive vibrational mode of the cruciform 
sensor is formed as follows' 

*.—EC-D*-'*7,. (25) 

This completes all the quations necessary for construct- 
ing the sensor excitation due to any arbitrary array of 
point masses, and for any three-dimensional position and 
orientation of the sensor. At this point, it is worth while to 
take a simple case as an illustration of the sensor-mass 
interaction. In order to simplify numerical manipulation, 
assume all distances are multiples of the arm length b, and 
all point masses are multiples of a value mo. 

We now choose the special case of a single point mass at 
the origin, and a sensor rotating in the x~z plane with 
center on the positive z axis. The situation is that shown 
in Fig. 2 (for Z=4). Hence, the following values are asso- 
ciated with this example: 

iV-l 

xi-yi^i-O 

Xo" K,-0 

Zo=4 (4Xarm length). 

*-0 

e-w/2 
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SENSOR ROTATIONAL POSITION,   Vj 

Fio. 5. Gravitational excitations of the individual arms of a 
gradient sensor near a point mass. 

We may consider this example as two dimensional, since 
the plane in which the sensor rotates also contains the 
source mass. 

Of interest first are the forces on the individual sensor 
arms as a function of sensor rotation $. These are shown in 
Fig. 5 [from Eq. (23), using (17) and (20)]. The calcula- 
tions were facilitated by the digital computer, the pro- 
gramming of which is discussed below. In Fig. 5, it should 
be noted that all four arm excitations are identical, except 
for a phase shift of T/2. This is to be expected since each 
sensor arm follows exactly the path of the one preceding, 
at a separation of 90°. In Fig. 3 as well as the following 
figures magnitude has been normalized, in that the con- 
stants G, M, b, etc., have been ignored. 

Finally, we show the gravitational mode excitation 
[Eq. (25)] in Fig. 6. This function appears to a first order 
to be a sinusoid of period rr. (The period of rotation of the 
sensor itself is 2»-.) Such information about the various 
frequency components of the sensor gravitational excita- 
tion is the underlying basis for determining the gradients 
of the gravitational field, as discussed above. 

2 2 

SENSOR ROTATIONAL POSITION,   V 

FIG. 6. Gravity-mode excitation of a cruciform gravitational 
gradient sensor near a point mass. 

We may obtain the amplitude of each frequency com- 
ponent n of an arbitrary signal by ust of the Fourier 
formulas 

.-/"%. si 

cosn^it/^i 

(26) 

, sinmpidti. 

These give the coefficients of the cosine and sine terms of 

DATA 
• COONOMTCS or lusses 
« MMMTUOe OF MASKS 

• OMPUTINC   -.TCRVALS 

S SENSOR ORIENTATIONS 

• FOURIER COMPOMNV 

• KAW OF RcvoumoN 

(      START  ") 

AMCULM 
COOROINATI 

SB60R RASUL 
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Fio. 7. Digital computer flow chart for the simulation of the gravi- 
tational field and dynamic sensor interaction. 
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the Mu, frequency component. The amplitude of the exci- 
tation (£,) is therefore 

E^iuJ+vW. (27) 

When Fourier analysis was performed on the function 
in Fig. 6 (with the aid of the digital computer) it was 
found that there were frequency components only at 
(2+4«) times the frequency of rotation («-0,1,2, 3) etc. 
This is a property of the four-arm cruciform gravitational 
gradient sensor. Although Fig. 5 is the result of a very 
simple case (point mass), the results are general for more 
complex mass distributions. These findings are in agree- 
ment with elementary sensor theory.' 

So far we have considered that the sensor is at a fixed 
location in the gravitational field of a mass distribution. 
Suppose now that the sensor moves through the field, de- 
scribing a circle around the mass distribution. A plot of 
sensor excitation as a function of angular position is called 
a gradient profile of the gravitational field. We may obtain 
gradient profiles of various orders by using Fourier 
analysis to select the corresponding frequency component. 
In other words, we identify the n,h order gradient as the 
amplitude of the term at n-times rotational frequency. In 
addition, by considering various sensor orientations {d,4>), 
we may obtain gradient profiles for many components of a 
high-order gradient (gravitational tensor). 

COMPUTER PROGRAM 

A digital computer program was constructed which is 
capable of mapping the contours of the gravitational 

ORDER OF 
GRADIENT 

FIG. 8. Spatial distribution of the gravitational gradient signal pro- 
duced by four equal, symmetric point masses. Masses are each one 
arm length from the origin, and sensor is three arm lengths from 
origin. Higher-order gradient profiles are magnified by several orders 
of magnitude. 

I      8      10     12 

ORDER OF GRADIENT 
IS     20 

Fio. 9. Relative amplitude of the gravitational gradient signal as a 
{unction of the gradient order; cross plot of Fig. 8. 

ORDER OF 
GRADIENT 

FIG. 10. Gradient profile produced by four unequal masses. Sensor 
distance is five arm lengths. Higher order gradients are magnified as 
in Fig. 8. 
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Fic. 11. Gravitational gradient signal variation with distance and 
angular position of sensor. Closeness of curves at increasing distances 
indicates lack of resolution in the gradient profile. (Second order.) 

gradient interaction for an arbitrary mass distribution and 
an arbitrary sensor configuration. The computer program 
evaluates Eqs. (17) through (27) for any given mass dis- 
tribution, sensor coordinate, and sensor orientation. It 
also automatically advances the sensor angular coordinate 
while maintaining constant radial coordinate. It thus cal- 
culates directly a gradient profile of any desired order 
(specified in the input). 

Figure 7 is a detailed logic flow diagram, demonstrating 
the gravity gradiometer computer model, and the calcula- 
tion of gradient contours. Although this particular pro- 
gram simulates a cruciform gradient sensor, a minor 
modification allows simulation of any desired sensor 
configuration. 

Results have been obtained for several selected mass 
distributions. These are presented in the next section. 

COMPUTER RESULTS: GRADIENT PROFILES 

Gradient profiles which have been generated by the 
computer are presented. We have chosen several particular 
examples of mass distributions which demonstrate the im- 
portant properties of the gravitational field and sensor 
interaction. 

Gradient profiles corresponding to a mass distribution 
consisting of four symmetrically arranged equal masses 
are shown in Fig. 8. Each mass is at a distance of 1 from the 
origin and the sensor distance is 3 arm lengths. All the fre- 

quency components are shown, up to 18 times rotation. 
The higher frequency components correspond to higher 
order gradients of the gravitational field. The profiles in 
Fig. 8 correspond to a sensor orientation SUCü that the 
plane of rotation passes through the origin. 

We see that although the double frequency component 
gives a slight indication of the details in the mass distribu- 
tion, the higher components give more and more resolution. 
This property of the higher order gradients was discussed 
above. In Fig. 8 the higher order patterns have been mag- 
nified many times. Figure 9 shows the relative magnitudes 
(maximum and minimum) as a function of frequency com- 
ponent. Because the higher order gradients become so re- 
duced in magnitude, only the second »rder gradient will be 
of practical interest for geodesy application. It is expected 
that higher order gradients will be masked by instrument 
noise. In the laboratory, however, noise may be controlled 
to « much greater extent. We therefore expect, in our ex- 
perimental investigation of gravitational sensors, to con- 
duct the measurement of the higher order gradient 
interaction. 

Figure 10 shows the gradient profile results for a different 
distribution; the two vertical masses are twice the size of 
the two horizontal masses. The sensor distance is 4.5 arm 
lengths. We notice here that the double-frequency com- 
ponent gives no indication that there are four separate 
masses. The sixth order component gives good resolution, 
and the tenth even better. Here again, the scales have been 
magnified successively as in Fig. 8. 

As the distance from the mass distribution becomes 
larger, the amplitude of the tensor components diminishes. 
This effect is shown in Fig. 11 (for the mass distribution 

FIXED SENSOR 
ORIENTATION 

FK. 12. Comparison of gradient profiles measured by sensors of 
fixed and variable orientations (point mass). Cosine-squared variation 
conesponds to second order gradient. 
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used for Fig. 10). Resolution of the gradient profile also 
diminishes as a function of the distance from the mass 
distribution, as can be observed by the lack of separation 
of the curves at increasing distance (Fig. 11). Lack of 
separation indicates that the amplitude is almost constant 
with angular position about the mass distribution, yielding 
only the monopole moment of the gravitational potential 
distribution. 

Finally, we demonstrate the effect of sensor orientation 
on response. In Fig. 12 we have considered a point mass 
which is circled by a sensor whose axis of rotation remains 
pointed in a fixed direction, thus varying its orientation 

with respect to the point mass. Hence, the sensor orienta- 
tion with respect to the mass continually changes as the 
sensor moves around the mass. In one extreme, the sensor 
experiences maximum interaction with the gravitational 
field, while the other extreme corresponds to a null posi- 
tion. The resulting figure eight was found to be a cosine- 
squared curve, and is indicative of second-order gradient 
variation. 

All of the foregoing analysis is quite general, and may 
be used to study the interaction of sensors and the gravi- 
tational fields produced by particular objects of interest in 
future gradiometer applications. 

C-9 
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DETERMINATION OF THE EARTH'S GRAVITATIONAL 
CONSTANT (CM) 

(Prepared by J . C . Harrison,  consultant 
to Hughes Research Laboratories) 
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SUMMARY 

The purpose of this study is to discover whether it is feasible 
to obtain a highly accurate determination of the earth's gravitational 
constant (GM) from measurements of the gravitational force and the 
gradient of the gravitational force.    It has been found to be theoreti- 
cally possible to determine GM for the real earth with its irregular 
geometry by means of Jeffreys' method for calculating the potential 
outside the earth.    This technique involves using a surface integral 
over the earth's physical surface.    If the observed forces or gradients 
do not agree with those calculated by Jeffreys' method,  the geometri- 
cal shape of the earth's surface then may be modified by «changing the 
assumed mean value for the earth's radius so that the observed and 
calculated gradients are brought into agreement.    However,   further 
study showed that in practice the contribution to the surface integral 
of the gravitational force gradient comes almost entirely from the 
immediate vicinity of the measurement station,   and that real measure- 
ments give information of predominantly local significance and say 
little about the dimensions of the earth as a whole.    It is concluded 
that an accurate determination of GM from gravitational measurements 
made on the earth's surface is not feasible. 



I.        INTRODUCTION 

The purpose of this study is to detenyiine the feasibility of 
obtaining the earth's gravitational constant (GM) from gravity and 
gravity gradient measurements taken on the earth. 

Spherical Earth 

A very simple relation exists between gravity and its gra- 
dient on the surface of a sphere which would make it possible to 
determine GM and the radius of the sphere by measuring these 
quantities. 

For a spherical,  nonrotating earth with radially symmetric 
density distribution,   we can write the earth's gravitational field as 

g = GM/r2    , (1) 

and the vertical gradient of the gravitational field as 

rrr   =  If   = " 2GM/r3 = " 2g/r   • (2) 

On the earth's surface we have 

(g)    = GM/a2;    (T    )    = - 2g/a (3) 
a 

where   a   is the earth's radius. 

Hence,   if both   (g)a   and   (T _)      can be measured accurately, 
it is possible to determine   a   from thl relation 

a =   - ^     . '    (4) 
rr 

We can then substitute in the expression 

g = GM/a2 (5) 

to determine a value for the earth's gravitational constant (GM), 

D-l 



Irregular Earth 

Although the relation between gravity and its gradient on the 
surface of a sphere is very simple and would allow GM to be deter- 
mined,  the earth is not spherical,  but has a highly irregular and 
relatively unknown shape.    Since the gravitational gradients are 
related to the local curvature of the geoid,    a theory based on a 
simple geometric shape such as a sphere or ellipsoid is clearly 
not adequate . 

The question then is whether measurements of gravity and its 
gradient can be combined to give significant information about the 
dimensions of the real earth which in turn can be used to determine 
GM.    Such calculations must be accurate to one part in 10^ to confirm 
present determinations and tc one part in 10   to provide a significant 
improvement. 

Many attempts have been made in the past to determine the 
earth's external gravity field everywhere in space from measurements 
on its physical surface.    The methods used in our investigation are 
those of the "new geodesy, " deriving from a paper by Jeffreys . 

Jeffreys^ theory for calculating the potential outside the earth 
involves using a surface integral over the earth's physical surface. 
This method is theoretically exact and involves only the values of 
observable quantities of the earth's surface.    Therefore,   it can be 
applied to an irregular body such as the earth to calculate external 
potential forces,   or force gradients,  provided the geometrical shape 
of the surface is known.   If the observed gradients do not agree with 
those calculated by Jeffreys' method within the accuracy expected, 
the geometrical shape of the earth's surface may be modified until 
agreement is obtained.   If the entire earth contributes moderately 
uniformly to the surface integral,   a scale factor change in the form 
of a modified value of the earth's radius would be effective in bring- 
ing observed and calculated gradients into agreement.    If,   however, 
the surface integral comes almost entirely from the immediate 
vicinity of the station, the method gives information of purely local 
significance and says nothing about the dimensions of the earth as a 
whole. 
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II. DERIVATION OF JEFFREYS' FORMULA 

In his paper    Jeffreys uses Green's theorem to derive an exact 
expression for the Newtonian gravitational potential outside the earth's 
surface,   in terms of a surface integral over the earth's physical sur- 
face (or any surface which completely encloses the earth) and a 
relatively unimportant volume integral throughout the earth. 

The advantage of this approach is that it is exact.    It is then 
easy to apply any approximations made in the practical application of 
the theory.    A summary of Jeffreys' derivation is given below. 

Let Up   be the Newtonian potential due to a mass within the 
earth's physical surface at a point   P   external to that surface.    R   is 
the distance from the mass to   P   (see Fig. D-l). 

i 

oeta-i 

Fig.  D-l 

Following Jeffreys,     we may apply Green's theorem 

//(u||- v|2)ds=j(DU2v-w2u, aT,       (6. 

with the volume integral being through any region and the surface integral 
over the same region.    This is true for any functions of position   U   and 
V.   In this case we let   U   represent the Newtonian potential and   V = t/R. 
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The region consicK'red by Jeffreys is bounded internally by a small 
sphere about   P   and by the physical surface of the earth.    In this case 
the right hand side is zero since   V  V = V  U - 0   in this region. 

On the left hand side,   as the sphere around   P   contracts,   we 
find that 

// 
U dS/R2 — 4TT U (7) 

leaving 

"v/Jfe-*- U^"/R) 
dS   . (8) 

We actually measure things on the earth with a rotating coordinate sys- 
tem and include the centripetal force in our measurements.    We can 
fix this up by defining a geopotential    ^ = 11 + l/2 ü)2r2 sin^ 0   where 
u = angular velocity of the earth and   r,   0   are spherical polar coordi- 
nate s. 

Substituting   U = * -  l/2 u)2r2sin2 0   into (8) and utilizing the 
fact that 

jfi AW * £ U/R, - £ (i AW,) i ds -fffi ■ Zj tr . 
(9) 

we can show that 

If we compare the volume integral correction with the potential due to 
a uniform density earth 

!lk U   =       P^dCVol) 
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we see this term is equivalent to a change in the earth's density of 
1/4TT (Zur/G),    or about   l/232   of the earth's mean density.    Now 
d^f/dn (the component of gravity perpendicular to earth's physical 
surface) = g cos *\>; where   g   is the gravity perpendicular to equipo- 
tential (level) surface and   ^   is the angle between the level surface 
and the earth's surface therefore,   eq.   (11) becomes 

" UP = // 
g cos \\l 

R ^ ^i-Z/W dx (11) 

We notice that if   *    is a constant, o 

Jh & (i) 
Therefore,   if we are only interested in the deviations from the mean 
potential \ty ='(^ - 6^),   we obtain 

4TT U    = 
P //^-*i(i)!-+f R dx (12) 

Provided that the shape of the earth is known,  the quantities in eq.  (12) 
are all determinable by physical measurement: 

g      =     magnitude of observed gravity at earth's surface 

i|i     =     slope of ground measured relative to level bubble 

6^r    =     difference in potential from a standard value,  i.e. , 
value at any particular point   A   on the earth's 
surface.    5*B   is then 

B 

/ 
gdh, 

with   g   measured along a path from   A   to   B and 
dh   as corresponding increments in height as 
measured by leveling. 

R, dS,   dx   are all known from the geometry of the situation. 

Equation (12) may be differentiated under the integral signs to ob- 
tain gradient components in any desired directior«. 

D-5 



1 
Evaluation of Integral 

Although exact,   equation (12) is not convenient because   ^   and 
the direction represented by   n   (the normal to the earth's surface) vary 
irregularly and rapidly.    The exact formula can be used in a limited 
region in which   UD   or its required derivative is very sensitive,  and 
an approximate form be used at greater distances.    For example,  at 
large distances we can approximate   6* s  gH   and 

an ■=-1    cos 9 ~ 
R 

(See Fig. D-2) so that the second term in (12) becomes 

gH cos 9 _£ 

R2 R (9) (13) 

We see from this that the second term is a very small correction term 
when   R > H   and   R >  h. 

NORMAL  TO 
EOUIPOTENTIAL 

Fig. D-2. 

We may also approximate   dS   by projecting it onto the refer- 
ence surface   *0   with lines joining the perimeter of   dS   to the earth's 
center.    In this case (see Fig.  D-3) 

dS    = dS cos o (ro0+h) 
(14) 
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Fig.  D-3, 

CENTER OF EARTH 

Strictly,    ^   will have to be corrected   for the angle between the 
reference surface   V    and the radius vector; this will amount to a 
ma> Imum of   12'.   A correction on the basis of simple ellipsoidal shape 
for   V    should be good enough,    r     is the radius vector to 
position concerned.    Hence,   we may replace 

^0   at the 

// 
g  COS  if   — 

over the physical surface by 

dS 

over an equipotential reference surface.    To a lower degree of accuracy, 
if we put   r0 = a   (the mean radius) and expanding   (a + h/a)^ »   1 + 2h/a, 
the integral above becomes: 

4TT U    = 
P //■ 

dS 
g (1 + 2h/a) 

for large distances. 
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This theory was developed to determine the form of   S0   from 
measurements of   g.    Since we wish to use it the other way around,   let 
us assume that we know,   from satellite observations,  the form of the 
equipotential surfaces except for one scale factor.    We will then use 
the theory to determine this scale factor. 

1 

We assume that the external potential is known in the form 

P n 

GM 
r 

1 +2>/r)n    Z   Pnm <sin ^ {C cos m\ + S        sin m X. 
nm nm 

m=o (15)    J 

where the   Cnrn,  Snm   have been determined up to   n = p   from satellite 
observations and   a   is the semi-major axis of the ellipsoid which fits 
best the earth's sea level surface. 

Our reference surface is the equipotential surface passing through 
the ground level beneath the point of computation.    The reference (sea 
level) potential is that given on the reference ellipsoid,   i.e., 

U 
GM 
r ft 

P2 (sin ^ - J4 ©' P4 (sin 4) + 
(16) 

The amplitudes of the smaller terms in this series are given by 
Cook.^   We can determine the potential at the point below the observa- 
tion point by leveling,  and   g   measurements of   (U - C)   where 

point 

J g dh 

sea level 

The equipotential reference surface is given by 

GM 
(U - C)   = — 1  + >^ (a/r)ny,p        (sin^)|c cos mX.  + S       sinm\[ 4  -« '  l-j   nm |    nm nm I 

(17) 

which,   if  GM  and   a   are assumed,   allows (a/r) to be determined. 
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III. APPLICATION OF JEFFREYS' FORMULA 

As outlined above,  by a direct application of Green's theorem, 
Jeffreys derives the relation (repeating (12)) 

4TT U    = 
P 

jj j(g cos 40 l/R -   5* ^ (l/R)| dS + jjj^-   dr 

actual earth1 s 
surface 

For convenience,   we repeat the definitions; 

(18) 

U      -   Newtonian potential of matter comprising the 
P earth at a point P outside the earth's physical 

surface 

g      -   value of gravity at a point on the earth's 
surface 

^      -    slope of earth's surface at the point where 
the value of gravity is   g,  i.e.,   the angle 
between the normal to the surface at this 
point and the direction of gravity,   or the 
slope of the surface as measured with a 
spirit level 

6^ - difference in potential from some standard 
value ^ . The value of S^ is immaterial 
because 

// 
constant   x  -5- (l/R)dS = 0 

on 
earth's 
surface 

R      =    distance from   P   to the point of the earth's 
surface 

d_ 
dn 

-   differentiation along the normal to the earth's 
surface. 

dS    =   an element of area on the earth's surface. 
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This relation is mathematically exact with no approximations 
The right hand side contains quantities which are physically deter- 
minable provided the shape of the earth's surface is known. 

g     -     gravity at the earth's surface (measurable) 

i|j     =     the slope of the earth's surface (measurable) 

Svff    =     difference in potential (measurable by leveling 
in short increments in combination with gravity 
observations   —   5*   = -2 g dh). 

We can thus compute   U   and,   with a small correction for rota- 
tion we can compute   S&   at all points in space.    Hence,  we can find 
gravity at all points in space,  as well as its derivatives.    Comparison 
with observations will indicate whether the integral on the right hand 
side has been evaluated correctly.    If it has not,  possible reasons 
could be   (1) insufficiently detailed knowledge of   g,^,  or Svj/   due to 
inadequate survey,   or   (2) incorrect values of   R   and   dS   because 
the wrong shape of the earth has been used. 

Because observed surface gravity is an input to the right hand 
side of the equation,   the gradient of   U   will provide us with the cor- 
rect surface gravity,  whether or not   R   and   dS   have been correctly 
estimated.    However,  measurements of the second derivatives of   U 
do give a test of our computations of   U    since it is dependent on the 
assumed values of   R   and   dS.    It therefore tests the correctness of 
our knowledge about the form of the earth's surface.   In principle,  then, 
we can use a combination of gravity and its gradient to test (and hence 
correct) the shape of the earth's surface as deduced from survey,   and 
use this information to determine GM. 

Feasibility 

Although the previous discussions show that it is theoretically 
possible to determine the earth's mean radius and,  thereby,   GM 
from measurements of the gravity field and its gradient,  further 
studies have shown that it is not feasible to do this with high accuracy 
in a practical way. 

To demonstrate this point it is not necessary to consider the 
whole of eq.   (18).    The second and third terms in (18) are small 
corrections to the first.    The discussion will mainly center around 
the first term. 

U ±J gc°s t   dS 
R 

(19) 
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Equation (19) shows that the external potential is derivable from 
the surface integral of an observable quantity (gcosijj)   and a geometri- 
cal factor    (dS/R)   which has the dimensions of length.    Let us assume 
that   (g cos i^)    can be determined to one part in 10      everywhere,   and 
that the geometry of the earth's surface is known with the exception of 
a scale factor (the true radius of the earth/adopted radius).    The terms 
(dS/R)   will be in error by the same scale factor.    Hence,   observations 
of   U   and    (g cos ^)   will allow the scale factor to be determined with 
the same accuracy as    (g cos I|J ).    This term can be measured to one 
part in   10" if   \\)    is not large,  because   g   can be measured to one part 
in 10" and   cos ^ *  (1 - l/2 ^ )   for small   i\>,    so that extraordinary 
accuracy for   <\>    is not required. 

U   cannot be measured directly since there is no direct way of 
measuring potential with this accuracy.    However,  we can measure 
derivatives of   U   dire 'tly; in particular,   we can measure the verti- 
cal derivative of   U    ^ '   9v    where    d/dv    is differentiation along the 
vertical: 

8 cos  * JA   (|)[ *S-.^ (||)   dS (20) 

Since (9R/9v ) is dimensionless, as is dS/R , the factor by which we 
multiply (g cos ^) is independent of the scale of the survey. There- 
fore, we cannot determine the scale factor by comparive; measured 
gravity values with those derived from application of (18). This is to 
be expected; since we are using observed gravity values to compute a 
value of the potential at a particular point, we may expect to compute 
gravity correctly from this potential regardless of the scale factor of 
our survey. 

However,   we can determine this scale factor by comparing mea- 
sured gravity gradients with those derived from application of the second 
derivatives of (18).    The weighting factors for   (g cos i)i)   are of the 
form   dS/R , have dimensions (1/Length),   and depend  on the scale fac- 
tor of the survey. 

If   (g cos I\I)   can be measured over the surface of the earth, 
and the shape of the earth's surface is known with the uncertainty of a 
scale factor (which could be the major axis of the ellipsoid of best 
fit to the sea level surface) then this scale factor may be determined 
with the same order of accuracy as    (g cos i^). 
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Tho next question is,     "What scale factor do we determine?" - 
If the contributions to the surface integral come almost uniformly 
from the earth's entire surface,   then we may determine a scale fac- 
tor which indeed refers to the earth's radius.    However,   if the ' 
integral comes almost entirely from within 100 miles of the observa-                                    , 
tion point and is thus almost independent of the remainder of the earth, 
we can then hope to determine only the geometry of the earth's sur- 
face within  100 miles.    This is not closely related to the  shape of the 
earth as a whole,  and therefore tells us nothing about the earth as a 
whole. 
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IV SOLUTION FOR SPHERICAL EARTH 

In order to investigate the relative contribution to the surface 
integral of the various parts of the earth it is not necessary to consider 
the exact shape of the earth.    For this problem an adequate first 
approximation would involve assumption of a nonrotating body made up 
of uniform concentric shells.    The external surface of the body is 
spherical and equipotential,  and its   g   is constant on the surface. 
Since this is true for the earth to within   1%,    this model is suitable for 
a first order calculation of the relative importance of the contributions 
to the vertical gravity gradient surface integral from the field through 
the areas on the surface at different distances.    The model,   shown in 
Fig. D-4 is a sphere of radius a and center     O.    The gradient is calculated 
at the point   P   which is at a height   h   above the surface.    The differen- 
tial area considered is the ring on the surface,   so that the angle POQ 
is a constant for all points on the ring. 

06O2-IRI 

Fig. D-4.  Model used for calcula- 
tion of vertical gravity 
gradient surface integral. 

In this simplified model,    ^  = 90   ,   g = constant,   and   64*    and 
u   are   0.    Under these conditions,  the equation for the gravitational 
potential (22) simplifies to the first term (see eq.   (23)).    The second 
order gradient of this potential (vertical gravity gradient) is then given 
by 
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7%'-% Hi? 00ds 

2 2        2 
where   R    = (a + h)    + a    - 2a(a + h) cos ^.    Evaluating, 

(21) 

8h    N'V        R 

and   dS = 2iTaz sin ^ d ^.   Hence, 

4TT   —p ) = 2iTa g 
\9h 

:   fl.\-     J_   •   3(a + h - a cos d)' 

w        f        (a    + 2h   + 3 a cos    «^ + 4 ah - 4 a    cos «^ - 4 ah cos d)    .   J,J X I i —S- SÜ ^ ELLsin^ 

0 J(a + h)    + a    - 2a (a + h) cos A 
( "' (22) 

or the contribution from a cap of radius 0 may be determined from the 
above integral over the limits from 0 to 0. This integral may be trans- 
formed by writing   x = cos p: 

cos 0 
7      2 
Ztra  g 

2       ' 2  ' 4ah) - (4a2 + 4ah) x + 3r2x2} 

2        2 ^T2 
{(a + h)    + a    - 2a(a + h) x } 

f      {(a^ + 2ti   + dx 

cos 0 

=   - 2ua g f     f - 2bx + 

\        (d - bx)1 

ex dx 

o     2 2cVdTb7 + y -dc) + f lali^l^a 
i cos 0 

VT^ bx (d - bx)- 

_      1 
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where 

f  = a2 + 2h2 + 4ah 

b = 2a{a + h) 

c = 3a 

d = 2a2 + 2ah + h2 

a s radius of sphere 

h - height of point above sphere 

x = cos 9 

82U 

J 
2 1     =     contribution to calculated vertical gravity gradient 

h A from inside a cap of' radius   0    (see Fig. D-4). 

To evaluate (23)    it was rewritten with   y = (1 - x). 

After simplification,  eq.  (23) becomes 

92U 

v8h' 

2 
_a_g_ 

(a + h)' 

2h3 - 2y(a3 + h3) - 3a(a + h)2 y2 

3/2 
2{h2 + 2a(a + h)y } 

(24) 

2 
a g 

(a + h)" 

,     2h3 - 2(a3 + h3) y    - 3a(a + h)2 y2 

, 1    7o x 7o 1   -   2 - jj2 
{h    + 2a(a + h) y   } 

where   y0 = 1 - cos 9   .    This may be written in the form 

82U 

w8h^ 

2 a 8 , 
(a + h): 

(25) 
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where   F = 2   when the integral is evaluated over the entire earth, 
i.e.,    0o = 180°. 

Values of   F   were computed for   h = 0. 1 to 10, 000 km and 
for   0O = 5° to 180°.    The results are given in Table D-I. 

For small values of   0O   we may use the plane approximation 
for small   h: 

'S): ^ ^A)- 
o 

Hence,   a   1      cap contributes   g/a[l + (57.3/2)]   - 29.65 g/a. 

The difficulties in using gradients are now plain.    Consider a 
point close to the earth's surface (the table of   F   shows the values to 
be very little affected by   h   until   h >   100 km).    The contribution from 
a small cap below the point of observation is very large.    The contribu- 
tion decreases as the size of the cap increases out as far as 70  ,    but 
there is very little contribution to the gradient from the region beyond 
30   .    If the integration were stopped at 30  ,    the calculated gradient 
would be   2. 16 g/a   as against the true value of   2.00 g/a.    Hence,  the 
earth beyond 30    has only altered the computed gradient by 0.16 g/a 
or 8%.    On the other hand,  the zone between 1    and 5    contributes 
(29. 65 - 6.76) g/a   or   22.89 g/a,   127 times as much as the earth 
beyond 30   .    The computations of gradient are almost independent of 
the distant parts of the earth and are extremely sensitive to the part 
close to the point of measurement.    A near surface measurement of 
the gravity gradient is thus extremely sensitive to local density fluc- 
tuations and is a poor method of trying to determine any quantity which 
relates to the earth as a whole.    It is inconceivable that it could be used 
to give a determination of the earth's radius to the accuracies desired 
(parts in 10    or better) 

Even at a point 1000 km above the surface,   over 90% of the 
gradient originates from within a 10    cap around the point directly 
below the measurement.    Only at 10, 000 km is the contribution spread 
reasonably uniformly over the earth's surface.   At this height,   how- 
ever,  the gradient is reduced to 0.055 of its surface value,   creating 
a severe measurement problem. 

•     i 
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V.        CONCLUSIONS 

In conclusion,  although it is theoretically possible to determine 
the earth's gravitational constant by measurement of the gravity field 
and its gradient,   combined with Jeffreys' method of calculating the 
field,   it is not technically feasible to do this with a high degree of 
accuracy because of the strong dependence of the gravity gradient 
on local density fluctuations. 

» D-19 

: 



1 

FRECEDINQ PACK BLANK . MOT FIUSD.   " 

REFERENCES 

1. R.J.  Bomford,  Geodesy,   Znded.   (Oxford University Press, 
Lonaon,   1962), p.  409. 

2. H. Jeffreys,   Beit.  Geophys.  3j_,   378-386 (1931). 

3. H. Cook,  Geophys.  J.  2,   199-214 (1959). 

D-21 



um 

APPENDIX   E 

DISCUSSION AND ANALYSIS OF THE UNIVERSITY OF VIRGINIA 
NEWTONIAN GRAVITATIONAL CONSTANT EXPERIMENT 

(Prepared by H.M.  Parker,   consultant 
to Hughes Research Laboratories) 

■ -     ■- ■ 



SUMMARY 

This Scientific Report is one portion of a program to find a new 
experimental method of improving our knowledge of the Newtonian gravi- 
tational constant   (G).    According to the NBS Technical News Bulletin 
(October 1963), the presently accepted value is 6.670 ± 0.015 x 10"^ 
m^kg'^sec"^   (three standard deviations).    The University of Virginia 
experiment,  which is now in progress,  utilizes a standard Cavendish 
mass arrangement operated in a rotating reference frame which under- 
goes angular acceleration proportional to the gravitational interaction. 
Because this experiment shows promise of improving our knowledge of 
G,    it is necessary that the new experimental designs considered in 
our studies show promise not only of improving on the known value of 
G,    but also of at least equalling,   if not surpassing,  the accuracy 
expected in the University of Virginia experiment.    The purpose of this 
report is to present the current status of the theoretical and experi- 
mental work on the University of Virginia project, to give a reasonable 
prediction of the accuracy which will result from the present project, 
and to estimate the potential accuracy of the method if a major effort 
were devoted to it.    The conclusions are that the present apparatus 
will have an accuracy of about one part in 10^.    It is anticipated that a 
reasonable ultimate experiment should attain accuracies greater than 
one part in 10^,  perhaps approaching one part in 106.    The primary 
limitations are metrology,   density inhomogeneities,   and determination 
of precise revolutions,   as well as the usual problems such as tempera- 
ture variations and drifts,   external vibrations,   alignment,   and thermal 
fluctuations. 

   ii .»M>^. 
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INTRODUCTION 

The basic method of the University of Virginia experiment for 
a precision determination of the Newtonian gravitation constant may be 
described as follows.*   The experimental apparatus is the standard 
Cavendish arrangement mounted on a massive precision rotating table 
(see Fig . Er 1). The small analysis system schematically a small dumb- 
bell,   is suspended either magnetically or by the weakest possible tor- 
sion fiber from a mount rigidly attached to the table.    Two large masses 
also rest on and rotate with the table.    A light-beam Jones balance sys- 
tem fixed on the table detects a change in angle between the small mass 
system and the table (and hence the large mass system); its output is 
the error signal for the control system which drives the table.    Thus 
the angle between the lines joining the small masses and the line joining 
the large masses is held (nearly) constant.    Consequently,   a torque on 
the small mass system about the vertical axis gives it (and the table 
because of the control system) an angular acceleration about the vertical 
axis.    In principle,    G   may be determined from the result if 

• A large fraction of the angular accleration of the 
system results from the gravitational interaction 
of the small mass system and the large mass 
system 

• The tare acceleration is constant during a time 
in which the system is operated with and without 
the large masses 

• The masses and geometry of the small and large 
mass systems are known 

• The angular velocity of the table as a function 
of time is observed and the table follows the 
motion of the small mass system sufficiently 
closely. 

The purpose of this report is to present the current status of 
the theoretical and experimental work,  to give a reasonable predic- 
tion of the accuracy which will result from the present project,  and 
(undoubtedly with less confidence) to estimate the potential accuracy 
of the method if a major effort were devoted to it. 

SeeH.M. Parker,  R.A.  Lowry,  A.R. Kuhlthau,  and J.W.  Beams, 
Bull. Am.  Phys. Soc.  l±,  850 (1966). 
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Fig.  E-l.   Schematic of apparatus 
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II.       SIMPLIFIED THEORY OF THE ARRANGEMENT 

The dominant characteristics of the method may be illustrated 
by a model of the arrangement in which the small mass system is 
replaced by two perfect uniform spherical masses connected by a rigid 
massless rod and the two large masses are perfect uniform spheres 
(the lines joining their centers bisect each other at the angle   ß)   as 
shown in Fig. E-2. It is a straightforward process to calculate the 
gravitational torque on the small mass system and the angular accelera- 
tion it produces (for the model   I = Zmr^j.    The result is 

CO grav 
CM   sinß   (ri   .    2     , «1-3/2      ri   .    2  , , m-3/2) 
—Y~  1-   <[1 + x    - 2x cos pj -   [1 + x    + 2x cos pj > 
^J        x       ^ ) 

1 (1) 

where   x   =   (r,/L). 

Several important characteristics may be deduced from this expres- 
sion.    <*>srav   has a maximum with respect to   ß   for some value between 
0   and   "ir/z,    the precise value depending on the value of   x.    As   x   becomes 
very small,    ßmax   approaches   Tt/4;   for larger values of  x,    ßmax   is 
somewhat less than   ■n/4.    Thus   <iwav   is reasonably insensitive to   ß 
near   ß^-x'   ^he requirement that   p   remain constant reduces to that 
involved in using the angular position of the table as a measure of the 
angular position of the small mass system.    In other words,  the require- 
ment for knowing accurately the distance between a small mass and a 
large mass is transferred to the requirement for knowing   i^   accurately 
(or,  more generally,  all of the radial distances in the system). 

In eq.   (1) the value of the small mass   m   obviously is missing. 
In this simple model the torque and the moment of inertia of the small 
mass system are proportional to   m,    so that   <jgrav   is independent of 
m.    In a real system of given geometry,    w    _      will be independent of 
the density of the small mass system if the density is constant. 

On the assumption that the large masses are spheres placed as 
close as feasible to the symmetry point,  for the radius of a large mass 
we may write   R = i^ - r^ - 6,    so that the angular acceleration becomes 

'PMG ('- *-f:)3 -^|['+-2-2—w 
j, =  1  __   ^ /,      „    JL\     sinJ  in  .L „2 _ 7 = «1-3/2 

grav        3 

- [1 +x2 + 2x cosß]"3/2j; 
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Fig.  E-2.   Geometry for discussion of gravitational torque, 
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we canconcludethett except for practical limitations on   6 (a measure 
of working space between small and large masses),    Wgrav   is inde- 
pendent of the size of the system.    Furthermore,   it is obviously 
desirable that the large masses have large densities.    Practical 
aspects    (e.g., the desirability of enclosing the small mass system 
in a low pressure chamber with the large masses outside) dictate 
that   x =   (rl/^i)   be significantly less than unity.    Calculations for 
reasonable values of   5    show that as   x   decreases,    W0rav   increases, 
In the limit of small  x,    werav   becomes 

r*  (y ' 6 \3      sin 2 ß ) ,     L   35     x2cos2ß., 

(2) 

It is interesting that the small   x   limit 

(w ) = 4IT p^G ~  0.8 x 10      p,, rad/sec    (p., in g/cm ) x grav'x=o rM rM xrM       e ' 

is an upper bound on the gravitational acceleration for this method. 

E-5 

J 



PRECEDING PAGE BLANK . NOT FIIWED. 
 "V 

III. SIMPUFIED THEORY OF MEASUREMENT 

A basic postulate for the following discussion is that the direct 
measurements are the time intervals corresponding to consecutive 
whole numbers of revolutions.    The current experiment is so arranged. 
It is possible (with considerably more effort and expense) to arrange a 
finer observation grid (i.e., times corresponding to smaller angular 
displacements) but it was thought that observations at whole numbers of 
revolutions would not impose a limitation on accuracy. 

The simplifying assumption is that the angular acceleration is 
constant; hopefully,  this is close to reality,  but of course it cannot be 
exactly true.    Nevertheless,  it should serve as a good basis for a crude 
accuracy analysis.    If   0 = a = constant   where   a   is either the tare 
acceleration or cograv   plus the tare acceleration (and <*>grav   is at least 
of the same order as the tare acceleration)   the usual constant accelera- 
tion expressions result: 

0 = u    + at o 
1       2 0 = CJ t   +   ■=•  at o 2 

where 

If 

then 

0=w     ,    0 = 0   at     t = 0 o 

0 = 2iTn      for      t = t     , n 

t    =üo)    A    +   Air 
n   a/V 

if   (4iTan/c*)   )   is small. 

4iTan 

t    « — <n   -^—2 jn n      u + 2^\  nJ + 

^„^n-'n-l    ==4   -(7)(2n-1) + 2(?)2   ^2-3n + l)+...j 
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n The raw data consist of n, Atn   pairs from which   n,  t^   may,   if 
desired,  be constructed, 
be calculated as follows: 

Since the acceleration is constant,  it may 
» 

2IT 
At. 

2TT 

At 
1 

4IT (At1 - At2) 

iiAt^At^    "   Atl At2 (Atl + At2) 

for consecutive revolutions,   or 

2TT (At    - At        ) n n+m 

At   At   , n      n+m ['n +m       n-1 2 (Atn+m + At  )1 n J 

th th 
for the n     and the n+m      revolutions.   In order to obtain numbers,   we 

2 x 10"° (rad/sec^)   (a reasonable value for "grav) assume that   a 
and   w0 ~ 0. 1 rad/sec   (which has appeared to be an appropriate value, 
though the angular speed at which one operates is definitely an impor- 
tant adjustable parameter for the experiment).    Let us examine two 
simple cases. 

TWO CONSECUTIVE REVOLUTIONS 

At, 

At. 

At1 - At2 

^yil - (2TTX10"
4

) + 2 (2ITX10"
4

)
2
(1) 

) 
~ 20IT=62.8 sec 

^~ \\ - (2TTX 10"4) (3)+2(2TTX10"
4

)
2
(7|  . . .| ~ 20-K = 62,8 sec 

^j j2(2Trx 10"4) - 12(2TTX 10"4)2 + . . . j-SOTT
2
 X lO-4 = 0.079 sec 

Obviously the error in 

a   = 
4TT (At1 - At2) 

At1 At2 (At1 + At2) 

is dominated by the error in   Atj - At2-    For tinnes of about 1 min,  time 
intervals can be measured to a few microseconds.    The determination 
of precise revolutions is more difficult.    Let us assume that the angular 
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position sensor can distinguish   10""   revolution (angles to   ~ 6 x 10"" 
rad).    Then the error in  Atj    and   ^2   is about 10~" of a period,  and 

error (At -At2) 

At.   - At- 1 t 

10"° (60) 
0.08 

7.5 
104 

or about one part in 10   ,  which is not a particularly precise result. 
Operation at a lower angular velocity,   allowing a longer time for "at" 
to accumulate and allowing a smaller initial velocity for comparison, 
improves the precision.   For example,   for   a = 2 x 10"   ,    w    =0.01 
rad/sec (~0.1 rpm),  Ati,At2 ~ 600 sec, Atj - At2 = 79 sec0error in 
At^  At2 ~ lO"6 (600) = 6 x IT)"4 and 

error (At1 - At^)   ^ ^ ^        7   5 

At1 - At2 80 10 6   ' 

or one part in about 10   .    This simple example indicates the basic 
desirability of operating at the smallest feasible angular velocities. 

B. A LARGE NUMBER OF REVOLUTIONS INTERVAL 

Again with   a = 2 x 10"" rad/sec     and   u   =0.1 rad/sec,  let 
us examine the second expression for   a   with   n = 1    and   n + m = 
50 (i.e.,   a 50 revolution interval): 

At.   = t.    =   —   il    - /^V1) •• -^ZO irsec = 62.8 sec 1      !      "o !      WJ ] 

^0  = IT 
/l    +   4TTa(50) 
fi    f 2 

(0 

- l> ~ 3 x 10    sec 

t -   rJL 
50 

2IT   ( ,        / irav  /0 

%r"(?)(2n 1)   +   2/^|\   {3n    - 3n + 1) .(^ 59.3 sec 
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,   .        error (At.   - At-J error (a) _          1 50;  ^ 
Atj  - At 50 

10"6 (60) 
3.5 

10" 

Fifty revolutions with   u0 - 0. 1 rad/sec   corresponds to an 
operating time of about 1 hour,   which is not unreasonable.    Assum- 
ing that the angular position sensor corresponds to the limit of 
accuracy   (10"" rev),   a lower angular velocity again improves the 
precision.    For example,    a = 2 x 10"",    u0 = 0.02,   n = 1,  n + m =■ 10 
(for about the same running time); 

At,   = t.    =   ^   \l 1        1 Wo    I 
"Z^fyi) + ...| ~100n sec - 314 sec 

10 

u 

V 1    +   4lTa^10) - 1    ~ 2750 sec; t   = 2510 sec 
2 1 g 
o 

At10  = 240 sec;   A^ - At10 = 74 sec 

,  v        error (At, error (a)   s 1 
At 1 At 

At10)  ~  10"6 (314)  s   4.2 

10 74 
10 

These simple considerations provide a basic idea of the error involved 
in the method and clarify the role played by the angular velocity. 
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IV.       TYPES OF" SMALL MASS SYSTEM SUPPORTS 

It is appropriate to discuss here the various types of supports 
which have been considered for the small mass system.    From the 
beginning of the experiment the University of Virginia group has 
believed that a magnetic support system would probably be superior, 
though it was recognized that certain aspects of a typical magnetic 
support system are reasonably uncertain.    Specifically,   bodies sup- 
ported in one dimensional magnetic systems have been observed to 
execute slow oscillatory rotational motion about a vertical axis 
even in the most quiescent state.    This lack of axial symmetry of the 
supporting magnet and supported body undoubtedly arises from the 
properties of real bodies and systems.    To our knowledge,  there has 
been no serious study of this effect nor any serious attempt to mini- 
mize it.    Assuming that conservative and/or dissipative torques will 
exist about the vertical axis of the small mass  system when a magnetic 
support is used,  the magnitude of the effect and the ability to control 
it adequately must be of primary importance.    For example,  it might 
be of considerable importance whether the support magnet is attached to 
the rotating table or fixed in the laboratory.    With the magnet fixed,   a 
conservative torque would be periodic and would therefore tend to can- 
cel out; a dissipative torque,   however,   would always be in the same 
direction.    With the magnet attached to the table,  the torque would be 
constant (assuming   ß   constant); however,   it might be difficult to 
determine the position or positions in which the torque is as small as 
desirable and varies with angular position as slowly as desirable.    The 
apparatus is now being modified to use a magnetic support,  and both 
methods of fixing the magnet will be tested. 

The other basic method of small mass system support,  used in 
the preliminary effort,   is the use of a small torsion fiber (a tungsten 
fiber was used first,   and then a quartz fiber).    There are two basic 
difficulties with this method.    (1) It is difficult to minimize the change 
in the torque on the small mass system refulting from the twist in the 
fiber; even if the fiber torsion constant were really constant (perhaps 
a good assumption for a quartz fiber) the fiber torque would impose a 
serious limitation on the allowable changes in angle   ß.    (2) Misalign- 
ment of the top fiber support point from the table rotation axis and 
misalignment where the fiber is attached to the small mass system 
produce a centrifugal twist in the fiber,   resulting in a torque which is 
proportional to the square of the angular speed. 
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V.       GEOMETRY OF SMALL AND LA.RGE MASS SYSTEMS 

Several geometries have been considered for the basic mass 
systems.    Spheres and right circular cylindert? have been considered 
for the large masses; dumbbells,   cylinders,   and discs have been con- 
sidered at least casually for the small mass system.    The most impor- 
tant concern is ease of precision fabrication and associated density 
homogeneity; ease of calculating the gravitational interaction is also 
important.    For the large masses,   metallurgists consider it more 
feasible to fabricate precise spheres than right circular cylinders; in 
addition,   calculations are easier with spheres.    For the small mass 
system,   real dumbbells are difficult to fabricate,  and calculations 
must include corrections for the connecting mass.    It was concluded 
that the  cylindrical   shape shows the most promise. 

The current precision experiment will use sintered tungsten 
spheres for the large masses*; the small mass system will use a 
quartz cylinder,   with the rest of the system close to and axially sym- 
metrical about the vertical axis.    The parts of the small mass system 
other than the quartz cylinder will have relatively small contributions 
to the moment of inertia and the gravitational torque and these can be 
corrected for adequately.    Fortunately,  the gravitational interaction 
between a cylinder and two point (spherical) masses is not difficult to 
calculate,   and this has been done.    The procedure involves the calcula- 
tion of the gravitational potential at any point in space resulting from 
and outside of a right circular cylinder starting with a circular ring 
element of the cylinder* and integration over the volume of the cylinder. 
The result is a series of Legendre polynomials.    The force on a point 
mass can then be found by taking the gradient of the potential,   and the 
torque on the cylinder can be calculated.    The angular acceleration of 
the cylinder is (in the precision expression the contributions of the 
rest of the small mass system would be included) 

w = 24 MG 

RL2 

_2_ 
20 

1 + 3 

[Pe (cos 0)]    ; 

oo        I      k+1 ->/•   i\ i 

i=0    k=0   j=l 

(3) 

t 

Supplied by Union Carbide,   Y-12 plant,  Oak Ridge,  Tennessee. 

J.D. Jackson,   Classical Electrodynamics (Wiley,  New York,   1962), 
p. 64. 
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here 

M    -     mass of one (each) of the large masses 

R    =     distance of a large mass from the center of the 
cylinder 

L    =     length of the cylinder 

a     =     radius of the cylinder 

0     =     angle between the cylinder symmetry axis and 
the line from the center of the cylinder to a 
large mass (same for both masses). 

The sum over  i   includes only even integers of  i .    It is estimated 
that about five terms in this series will be required for accuracy of 
one part in 10".   Equation (3) corresponds to an ideal situation: 
equal   M's,    perfect geometry,   etc.    The construction of appropriate 
expressions for unequal masses,   additional contributions to small mass 
system moment of inertia,   etc.,   is straightforward.    It is also inter- 
esting that the value of   Q   (0 = ß,    used earlier) where  CJ   is maximum 
is closer to   IT/4   than for the dumbbell model. 

f    •1 
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VI.       THE MOTION PROBLEM 

In the actual experiment,   of course,  the motion of the small 
mass system will not be a constant acceleration.    However,   with the 
anticipated abundant data for each experimental run   —   n, At     pairs 
for a reasonably large number of revolutions   —   it is hoped that the 
data can be reduced so that maximum precision may be extracted. 
With some type of least squares procedure anticipated,   it is obviously 
desirable to know the form of the solution of the equation of motion. 
Two effects on motion have been studied in considerable detail. 

FIXED MASS EFFECT 

Early in the study it was recognized that the masses fixed in 
the laboratory and nearby would have an effect on motion.    Rough 
estimates indicate that a 200 lb man at a distance of about 20 ft 
exerts a peak torque on the small mass system which is approximately 
equal to the torque corresponding to a precision of one part in 10^.    It 
may be clearly shown that the fixed mass torque in the laboratory is 
as    sin 20   where   9   is the angular position of the small mass system 
(first term in the expansion of eq.  (3)). Moreover,   with the support 
magnet fixed in the laboratory the conservative support magnet torque 
is expected to behave as   sin (mO),    or as a sum of such terms,  where 
m   is an integer.    Therefore,   it becomes interesting to examine a 
motion equation of the form     0 = a + A sin(m0 + mp).    We shall not 
attempt to narrate in detail the considerable effort devoted to the solu- 
tion of this motion problem,  but will merely summarize the current 
state of the investigation.    The first integral of this equation (the 
"energy" equation) is 

02 = 0^ + 2a0   -   £~   $ cos (m0 + m^) - cos m^ f  . (4) 

The next integral cannot be found in closed form.    Furthermore,   since 
we are concerned with large values of   0   (at integral multiples of whole 
revolutions),   small angle approximations are useless.    An expansion of 
the pertinent quantities shows that the time for   n   revolutions   tn   may 
be written in the form 

) 

where   K.   is a function of   A, a, co , p. i '    '   o 
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■y    An inspection of (4) is interesting,  however.    Consider the value 
of   0     at   0 = Zirn.    The   A   term on the right always has the same value 
(i.e.,   zero),  even though the time average of the velocity over one 
revolution 

n 
2TT 

At 

I 

n 

(a direct result of the data) is a nonzero function of the parameter   A. 

• 2 If   0     is the energy,  the constant acceleration   a   clearly cor- 
responds to a linear increase in energy with angular displacement.    The 
periodic acceleration   (A term)  corresponds to a periodic (in 9)   oscilla- 
tion of energy,   i.e.,  transfer of energy to and from the small mass 
system.    The space (angular displacement) average energy,   which changes 
with time, must then result from the altered energy distribution in time, 
since the period is continually and monotonically changing.    Therefore, 
if data actually containing some fixed mass effect were reduced as if the 
effect were absent,  little error would be expected.    This reasoning led 
to the following computer experiments. 

If values of   a,   cu  ,   A,   p, m   are given,   eq.   (4) can be used to 
calculate   Atn   (single numerical integration),  the time for the   n th 
revolution. These n, Atn pairs then constitute the data. If constant 
acceleration is assumed, the acceleration for two consecutive revolu- 
tions can be calculated 

a   = 
4TT (At     ,  - At  ) n-1 n 

At    At n      n- .  (At    + At     ,) 1        n n-1 

and compared with the original acceleration   a 

fDa 

Some preliminary results are given in Table E-1. 

Because of the integration error in evaluating the integral for 
Atn,    values of   fDa = (a - a/a)   which are less than about 10"' are 
not significant.    Very roughly,  the error in   a"   appears to be propor- 
tional to   A^/CüQ,    decreasing slightly as   a   increases.    Obviously, 
the calculation of an acceleration  ä  from two consecutive real data 
points,  as we have done here,   can give no indication of the actual 
error existing in  ä\    (In this numerical experiment,    a   is known.) 
These numerical experiments are continuing in an effort to   (1) refine 
the error dependences,   and   (2) investigate the possibilities when runs 
of many data points are reduced. 
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TABLE E-l 

Preliminary Results of Computer Experiments 

w ,   rad/sec 
o 

n a,   rad/sec A,   rad/sec V m rr>        a - a f Da =  

0.1 10 2x 10-6 io-3 0 1 2.96 x IO"3 

0.1 10 2x 10-6 io-3 
IT 1 4.4x IO-3 

0.1 10 2x 10-6 io-3 0 2 2.97 x IO-3 

0.1 10 2x 10-6 io-3 V2 2 4.39x IO-3 

0.1 10 2x 10-6 io-4 
TT/8 2 3.3 x IO-5 

0.1 10 2x 10-6 io-6 
^4 2 -2.3 x IO-8 

0.1 10 io-4 io-6 0 2 6 x IO-9 

0.4 10 2x 10-6 io-3 
IT/8 2 1.4x IQ-5 

0.2 10 2x IO-6 io-3 
TT/8 2 2.22x IO-4 

0.05 10 2x 10-6 io-3 
TT/8 2 3.28 x IO"2 

0.025 10 2x IO-6 io-3 
IT/8 2 2.10x IO"1 

Even the most preliminary results are illuminating,   however. 
Considering the laboratory fixed mass effect,  an upper bound on   A 
may be determined as follows.    The entire space external to the rotat- 
ing table system may be considered either occupied by mass of density 
pav   or empty; we then look for a mass distribution that would produce 
the maximum   A.    It is entirely reasonable that this configuration is 
two spheres placed symmetrically on either side of the system and of 
infinite radius   (x -*0).    The acceleration (simple dumbbell model for 
the small mass system) for this configuration is   A = 4Tr pavG,.   If 
Pav =: 3. 5 g/crn^ is taken as reasonable, the result is   A = 3 x 10"° 
rad/sec^.    Therefore,    3 x 10"" rad/sec    is an absolute upper bound 
on   A   for a laboratory fixed mass effect; a more practical value would 
be two or more orders of magnitude less than this.    It appears unlikely 
that a laboratory fixed mass effect will be significant,  except possibly 
for operation at extremely small angular velocities. 

E-17 



An   A sin (mO + rap)   effect is expected for the magnetic suspen- 
sion arrangement in the laboratory fixed magnet case; here there is no 
way to determine theoretically an upper limit on   A.    However,  limits 
on   A   may be determined experimentally if the oscillatory motion is 
observed when the small mass system is suspended magnetically. 

* 

It is important to recall that   G   will be determined by compar- 
ing the motions with and without the large masses.    Thus it is very 
likely that additional cancellation of errors will occur and can be 
demonstrated.    These ideas are also included in the continuing numeri- 
cal experiments. 

B. CENTRIFUGAL EFFECT 

When the small mass system (model dumbbell or actual cylinder) 
is connected to the support point (table   —   or magnetic sphere in the 
magnetic suspension case) by a very flexible fiber,  misalignment in the 
attachmants  of the fiber and the position of the top support point generally 
produce a bending and twisting of the fiber as it deflects outward in the 
centrifugal field.   Although it is hoped that these errors will be small, 
they are nonzero and are not accurately measurable.    The result is an 
additional torque and hence an angular acceleration of the small mass 
system which is proportional to.the square of the angular speed.   An 
equation of motion of the form   0 = a + k0^   has been derived.    Two 
cases result when   a   and   k   have the same and opposite signs.    Clearly, 
for   a >  0,  k >  0, 

r 

-kO V 1 + w    k/a   cos o 

and for   a >  0,   k <  0, 

Yak t + (^ tan ^ cos VkÄ 

•kO 1 + c/ k/a cosh ■y-ak t + ^ tan h^ = u    V" ^/a 

in each case   0 = 0,   0 Ur at   t = 0. 
performed for the first case    (a >  0, 

Numerical experiments have been 
k>  0).    Times for   N   revolutions 

t^r   were calculated from the solution (the expression was arranged 
carefully to avoid excessive dropout at small values of   k),    and the 
resulting perfect data were reduced as if the motion were constant accel- 
eration motior.    The resulting values of   a,    each derived from two con- 
secutive revolutions, 
and were least squai 

s,   changed (increased) with the number of revolutions, 
ires fitted to an expression of the form   'S = c    + c. 9   ; 
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here   9   is also calculated as if the acceleration were constant.    The 
fitted values of   C0   and   C^   were compared with   a   and   k,    respec- 
tively.    Some preliminary results are shown in Table II,   where   N 
is the total number of revolutions   (N - 1   is the number of values of 
a   reduced),    fDa = (c0 - a)/a,    and   fDk = (c^ - k )/k-. 

TABLE E-II 

Preliminary Results of Numerical Experiments 

N a k wo 
fDa fDk 

10 

30 

! 10 

10 

10 

2x 10-6 

2x 10-6 

2x 10-6 

2xl0"6 

8 x 10"6 

10-4 

10-4 

10-4 

10-4 

10-4 

0.1 

0.1 

0.05 

0.5 

0.1 

-1.9 x 10-6 

-1.89 x 10-7 

-2.05 x 10-7 

-9.0 x 10-5 

-1.08 x 10-7 

3.47 xlO-6    1 

-1.20 x 10"8 

2.65 xlO-7 

7.14 x lO-6    | 

-2.83 x 10"7 

The obvious qualitative results from these experiments are the 
following: 

1 .     The centrifugal term mustnot dominate the constant 
term (for accurate reduction),  and thus low angu- 
lar velocities are indicated. 

2. For larger data sets   (N = number of revolutions), 
the reduction is better. 

3. The centrifugal effect is easily seen in the results 
which are reduced on the basis that the accelera- 
tion is constant. 

4. A sizable centrifugal effect can be tolerated and 
the constant term may still be extracted with 
reasonable accuracy. 

More detailed numerical experiments are in progress. 
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C . COMBINED FIXED MASS AND CENTRIFUGAL EFFECTS 

• 2 Very recently a motion equation of the form   6 = a + kO    + 
(m0 + mp)   was integrated once to give 

A sin 

A2        2    2k9     a   ,,        2k0, 
oe        "k'e       ' 

2A 

(-5) 
— sin (mO + mc^) m 

m 

cos (mO + mp) + e 2k0 2   —  sin mp + cos mp m 

this can be used to calculate (with one numerical integration) the time for 
the   n**1 revolution,  and thus perfect data can be generated for a com- 
bined fixed mass and centrifugal effect case.    The perfect data may be 
reduced as if the acceleration were constant,   and they may be fitted to 
appropriate forms to determine how well the parameters (particularly   a) 
can be recovered and how the error depends on the values of   a,   k,  A. 
It is anticipated that this case will not be drastically different from that 
for the centrifugal effect alone. 

It should be noted that a considerable effort has been devoted to 
the motion problem.    We believe the above type of analysis (or similar 
analyses if a different type of acceleration component is found) forms 
a sound basis for the study of real data.    We believe that the noise level 
of real data at least can be demonstrated. 
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VII.       MISALIGNMENT ERROR 

Ideally,  the center of symmetry of the small mass system should 
lie at the midpoint of the line joining the centers of the two (equal) large 
masses,  and this point should lie on the axis of rotation of the table. 
Departures from this ideal arrangement naturally will result in errors. 
There are at least two types of errors which may be encountered: 
(1) error in the gravitational torque,  because of the misalignment; 
(2) dynamical effects. 

The change in the torque as a result of geometrical error is of 
second order in the linear displacements. For example, consider the 
situation sketched below: 

0675- 

here an error   6||    and   6^    is assumed in the position of the center of 
symmetry of the small mass cylinder,  and no error is assumed in the 
angle   ß.    A simple analysis of the first term of  w  ('^'95% of w)   shows 
that the fractional change in   w   is proportional to   (o/R)  ,    with coeffi- 
cients of   +6 for   6||    and -7/2   for   6. .    If   R ~ 8 cm,   errors of 
^ 1 mil for   6L    and   6||    correspond to changes of one part in 10" for 
the torque.    Since interferometric methods are to be used to measure 
distances and to monitor (and hopefully adjust) alignments and since 1 
mil is about 40 wavelengths,   we hope misalignments can be maintained 
below this level. 

The situation is similar for errors in the vertical position.    The 
large sphere centers and the cylinder's symmetry axis ideally lie in 
the same horizontal plane.    The torque behaves as the cosine of the 
angles with a mean plane,  and therefore the fractional changes are as 
(6/R)^.    Vertical positioning to less than 1 mil should be possible. 

The dynamical effect is more subtle.    A basic point of departure 
is as follows. Assume that the support point and the center of mass of 
the small mass system do not coincide with the rotation axis of the table. 
If a frame rotating with the table is used instead of an inertial reference 
frame and constant angular velocity is assumed,  a (fictitious,   inertial) cen- 
trifual gravitational field must be added.    We can show clearly that the 
radial centrifugal field   (w^ r)   gives a resultant force on a body (at rest in 
the rotating frame) which is equal to the resultant force if all the mass 
were concentrated at its center of mass.    Moreover,  the moment of the 
centrifugal force about the center of mass has no component parallel to 
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the angular velocity and the perpendicular components vanish if the 
body is a lamina in a plane perpendicular to   u    or if certain products 
of inertia are zero.    Thus the most obvious source of a dynamical 
effect arises from the detailed manner in which the force for balanc- 
ing the centrifugal force is applied to the body.    Observing again from 
the nonrotating frame,   we may say that if the force for producing the 
centripetal acceleration of the center of mass of the rotating body is 
not effectively applied along a line through the center of mass,   it will 
also produce a moment of force about the center of mass and will 
tend to contribute an additional angular acceleration. 

The following description applies for the small mass system. 
First,   consider the case in which a very flexible fiber connects the 
cylinder (probably with a vertical,   rigid stem) to a support point, 
either a magnetically supported body or a point rigidly attached to the 
table.    If the top support point does not lie exactly on the table's 
rotation axis,  the bottom of the small mass system (the cylinder) will 
deflect outward as the table and small mass system rotate.    If the 
bottom of the fiber is not perfectly aligned with the center of mass of 
the cylinder and stem, the centripetal force on the cylinder is applied 
off center and a torque results on the cylinder.    Note that the servo 
system driving the table (ideally) prevents any angular displacement of 
the cylinder relative to the table. Such a misalignment of the top and 
bottom of the flexible (but not perfectly flexible) fiber gene rally produces 
an angular acceleration of the small mass system proportional to the 
square of the angular speed.    Although an analysis has been made 
(Timoshenko1 s problem of the compressively loaded column can easily 
be converted to a tension loaded column), the results are of limited 
value,   since the important misalignment parameters cannot be evalu- 
ated accurately.    The most important result is that we can conclude 
that misalignment errors on the order of 1 mil,   with the contemplated 
angular speeds (and the contemplated weak fibers) should give centrif- 
ugal angular accelerations which are one or two orders of magnitude 
smaller than that resulting from gravitational interaction.    Of greater 
importance,   assuming a fixed small mass system arrangement,  an 
angular acceleration component proportional to   u^   can be accurately 
separated out of the data,  as demonstrated in the computer experiments 
described elsewhere. 

It should be noted that if the entire small mass system is rigid 
(i.e.,  if the flexible fiber is replaced with a rigid rod) and the top of 
the system is magnetically supported,  then for reasonable configura- 
tions the angular acceleration resulting from the centrifugal effect 
is expected to be virtually zero,  even when the top support point is 
displaced from Ihe axis of rotation.    Here it might be noted that the 
first magnetically supported system to be used contains a flexible 
fiber (100 [i quartz,  a fairly stiff fiber),  and a centrifugal effect is 
expected. 

- 1 
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The preliminary conclusion is that misalignment errors should 
not be a major source of final error,  if the interferometric techniques 
for observing and adjusting alignment are developed successfully. 
Positioning accuracy of 1 mil does not appear prohibitively difficult. 

i 

E-23 



PRECEDING PAGE BUNK - NOT FIIMED.   . 
V... ..»* 

VIII.       ACCURACY ANALYSIS FOR THE G DETERMINATION 

G   will be determined from an expression of the following 
form: 

- GM r/fl     a L\ /c:\ 
Vav   "   R3_^     f(f'   L'    R)    ■ (5) 

mL 

For the present purpose,  assume that the two large masses are identi- 
cal.    If they were not quite identical,    Wgrav   would be written as the 
sum of two terms similar to that of (5),   and no significant change would 
occur in the accuracy considerations.    With a cylinder for the basic 
small mass system (where the other parts have 90    rotational sym- 
metry),  the function   f   is the series in derivatives of the even Legendre 
polynomials,  with coefficients which are series in   (a/L)^,    as indi- 
cated earlier.    R   is the distance of the center of a large mass from 
the center of the cylinder.    I   is the moment of inertia of the small 
system and   a   and   L   are the radius and length,  respectively,  of the 
cylinder.    Wgrav   is the measured angular acceleration of the small 
mass system resulting from the gravitational interaction with the large 
mass system.   In deriving the equation,  the ideal geometry of the 
small and large mass system is assumed. 

If the expression is solved for   G,    the variation is taken for 
all the quantities whose values must be found (measured or calculated), 
and the resulting expression is divided by the original one, the 
following results: 

6G    _   5cograv   +   36R        6M.   +  ö/l/mL2)        6f_     . 
G w R      "    M T /    T 2      "     f ^ grav I/mL 

If   f   is a function of   (3,    (L/R),    and   a/L;   if the first two terms of 
f   are sufficient (one term for the   (5R/R)   part);   if   I   is taken as the 
moment of inertia of the cylinder alone; and if reasonable and 
expected values are used for the various quantities,   we obtain 

6G   _   6(Vav   +   35R   _   6M   +   0  ü52   6a   _   0  052   5L   _   jdi/dß) 6ß 
G     -     ä)grav R M • a ■ L f 
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We may see the direct sources of error in the determination of   G. 
If the variations are called errors and if it is assumed that the errors 
have normal distributions,  the fractional error in     G   will be given 
by the square root of the sum of the individual fractional errors.    We 
shall consider the error sources by type. 

METROLOGY:   ((5R/R),   (öM/M),   (6a/a),   (6L/L)) 

1 6a/a,  SL/L 

The diameter   2a   and length of the quartz cylinder to be used 
for the small mass system will be approximately 1/4 in. and 1.5 in. , 
respectively; the density is assumed constant.    If   a   is constant,   an 
error of 1 wavelength of light (5 x 10"-' cm) in the diameter gives 
0.052 (6a/a) ~ 0.82 x lO"5.    Similarly,   if   L   is constant (a better 
prospect),   an error of   1\    in the length gives 0. 052 (6L/L) ^ 0 .7 x 10"° 
Therefore,  a measurement of the cylinder dimensions,  especially the 
cylinder diameter,   is probably important.    The details of this problem 
have not been worked out.    It should be noted that departures from a 
cylindrical shape indirectly induce other errors through the influence on 
the gravitational torque and moment of inertia.    When these errors are 
determined or their limits are determined,   limits on the indirect errors 
may be established.    The supplier is attempting to make a fused quartz 
cylinder with a diameter which is constant to one part in   lO-*. 

2. 6M/M 

It is expected that the Bureau of Standards will determine the 
mass of the large sintered tungsten spheres and that an accuracy of 
better than one part in 10" will be achieved. The large mass sup- 
plier (the Y-12 group) expects to achieve sphericity to about 5 \iin. 
It is hoped that the absolute diameter may be measured to about the 
same order of accuracy. 

3. 6R/R 

Interferometric techniques are being developed for measuring 
the distance between the most distant surfaces of the two large spheres 
after they have been positioned on a quartz plate on the table.    R   will 
be deduced from this measurement and from the known diameters of 
the spheres.    Fortunately,  the positioning and aligning errors are not 
critical (see below).   An error in   R   corresponding to one fringe shift 
gives   (6R/R) ~ 0.3 x 10"5. 
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B. TECHNIQUE AND PROCEDURE: (Jj^^        6a)grav 

grav 

1. [ (6f/dß) 6ß1 /f 

The function   f(ß,   (L/R) a/L)   has a maximum with respect to 
ß   at an angle just slightly less than 45    (estimates using the first 
two terms of   f   and the cited values of   a   and   L   give 44    17'). 
Since a precision method of measuring   ß   has not been devised,  and 
since   f   changes slowly around its maximum value,   it is anticipated 
that   Wgrav   w^ ^)e measured with reasonable accuracy in   ß   rang- 
ing across   ßmax.    and that the value at   Pmax   will be inferred.    An 
accuracy of 1 mil in adjusting a sensor at 5 in.   radius should be suffi- 
cient to yield the maximum   w to an accuracy of one part in 10. '                                          grav ' r 

2. 6Cü /ü 
gray    gray 

The majority of the experimental,   operative errors are found 
in the term   ^w /GJ .    The recognized pertinent factors in deter- 
mining this term are me following: 

a. The basic procedure for extracting the angular accelera- 
tion resulting from the gravitational interaction between the large and 
small mass systems is to compare two runs (or portions of two runs), 
one with the large masses in place and one with the large masses 
removed.    The critical factor in this procedure is the validity of the 
necessary assumption that all other accelerations present (the tare 
accelerations) are identical for both runs.    It is anticipated that a 
comparison of many such pairs of runs (and the values of   ü^ 
extracted) will provide a suitable basis for an accurate analysis of 

"gray• 

b. Errors in alignment of the apparatus cause errors in 
the measured acceleration. As indicated earlier, it is fortunate that 
the error is of second order in the linear misalignment. Alignment 
procedures have been developed which are expected to reduce the 
misalignments to less than 1 mil (errors of less than 1 or 2 x 10"°). 
The testing of these procedures will provide verification of the mis- 
alignment effects.    No difficulty is anticipated here. 
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c. The time measurement is more than adequate for the 
determination of the times for consecutive revolutions of the table. * 
The sensing of precise revolutions is more critical.    The present 
sensing system utilizes 0.01 in.  circular apertures at a radius of 
about 100 in.,   giving an optical signal width of about 10"'* rad; with 
another order of magnitude derived from the constancy of the signal 
level triggering,  this results in a resolution of about 10"-' rad.    The 
configuration is being changed (slit rather than circular aperture); 
with other refinements,  this is expected to result in angular posi- 
tion sensing to better than one part in 10" (2ir x 10"" rad in 2TT rad). 

d. A remaining (and serious) error results because the 
motion of the small system is not completely synchronous with that 
of the table.    The system which detects the changes in the relative 
angular position of the small mass system and the table can easily 
sense   Aß   of the order of 10"" rad; it furnishes the error signal for 
the control system which drives the table.    This error signal is 
plotted on a strip recorder as a part of the experimental data,  and it 
can be calibrated with reasonable accuracy in terms of changes in the 
angle   ß.    However,  the present table has lubricated ball bearings and 
the table driving torque is largely (almost completely,   since the 
accelerations are small) that required to balance the bearing friction 
torque.    Moreover,  the friction is not constant.    In addition to exhibit- 
ing a variation of about 10% with a period equal to that of the table, 
the friction has an appreciable variation component with a period twice r 

that of the table as well as appreciable higher frequency components. 
The offset for driving the table in one direction is about 50 x 10"" rad. 

If the   Aß   offset (between the small mass system and the table) 
were really constant during a run,  no error would result from it. 
However,  the variation in the   Aß   does produce an error.    This is 
particularly true of the   Aß   variation component,   which has a period 
twice that of the table when the data are reduced by considering con- 
secutive single revolutions.    One solution (which was demonstrated 
for some crude data) is to calculate accelerations by considering con- 
secutive intervals of two revolutions each; this procedure doubtless 
will be utilized in the study of good data.    It should be mentioned that 
an obvious improvement is to use a rotary table with less friction and 
less variation in the friction; gas bearings come to mind immediately. 

e. The system is now being studied with the crude mass 
systems and a magnetic suspension for the small mass system (with 
the support magnet attached to and rotating with the table).    An alumi- 
num cylinder and stem are attached by a fairly long quartz fiber to 
a magnetically soft,  magnetically supported sphere.    It has been found 
that the small mass system (the sphere) experiences a torque about 
the vertical axis which varies with relative angular position of the 
sphere and the support magnet; at least initially, this torque was 
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uncomfortably large.    Such a torque probably results from a combina- 
tion of a lack of spherical (magnetic) symmetry of the sphere and a 
lack of axial symmetry of the support field.    Minor alterations of the 
support magnet have decreased the torque; however,  it is still doubt- 
ful whether the magnetic torque can be made sufficiently small and 
sufficiently stable without a major redesign and reconstruction of the 
magnetic support configuration.    It is possible that the simple quartz 
fiber support from a point fixed to the table is capable of better 
accuracy than the present magnetic support system. 
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IX.       ESTIMATION OF THE ACCURACY IN G 
IN THE PRESENT PROJECT 

The University of Virginia group is concerned that the project 
to determine   G   has not progressed mor3 rapidly.    A logical inter- 
mediate objective,   which corresponds to solving a major fraction of 
the real problems,   has been defined,  and a target date of September 
1967 has been set.    For a given small mass system (of nonprecisely 
known properties) and brass large masses (of nonprecisely known 
properties) in a fixed relative position,  the intermediate objective is 
to demonstrate that the angular acceleration of the small mass sys- 
tem can be measured reproducibly with a precision appropriate to the 
final absolute determination of   G.    The intermediate objective is thus 
not concerned with 

• The precise mass,   sphericity,   or homogeneity 
of the large masses. 

• The precise dimensions,  mass,   or moment of 
inertia of the small mass system components. 

It is concerned with 

• Accurate repositioning of the brass spheres on 
the table or accurate measurement of reposition- 
ing errors. 

• All problems associated with determining the 
angular acceleration of the small mass system 
because of gravitational interaction with the 
large masses. 

In the final phase,   with precision large and small mass systems 
and with certain properties (e.g.,  dimensions and masses) determined 
by independent measurements,   other precision mass system properties 
(for example,  the density homogeneity of the large masses) would be 
studied in table experiments.    Reasonably accurate limits should then 
be obtained for the final absolute value of   G. 

Assuming that the present project for determining   G   will be 
restricted to the ball bearing high friction rotating table and assuming 
that the magnetic support system will not be completely redesigned, 
it seems reasonable to estimate,  based on current experience, that 
G   will be determined to an accuracy of about one part in 10   .   If 
certain problems (e.g., correction for Aß   variations) are solved 
suitably,   a slightly better result may be obtained.    If the constancy 
and measurability of the dimensions of the small mass quartz cylinder 
are not as anticipated,  the result could be slightly worse. 
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X.     ULTIMATE PRECISION OF THE METHOD 

The ultimate precision of this method obviously cannot be pre- 
dicted until this project is concluded.    Nevertheless,   some problem 
areas are already fairly well defined.    Others are less clear.    The 
effort to reach the ultimate potential precision of the method would 
clearly involve effort in the following areas. 

Observation of precise revolutions (smaller angular displace- 
ments do not appear necessary) of the small mass system will be a 
problem.   At least two alternative approaches maybe used.    We could 
attempt to observe the angular displacements (revolutions) of the small 
mass system directly,   rather than observing the revolutions of the 
table.    This would reduce by a large factor the errors resulting from 
Aß   variations,  and additional modifications of course could be made 
to reduce the   Aß   variations.    Such an approach possibly would change 
the experimental configuration,  but it should be feasible. 

The second approach could involve concentrating on reducing 
the   Aß   variations,   continuing to observe table rotations with correc- 
tions for   Aß   variations if necessary.    This approach would certainly 
require a much smaller and more constant table friction torque (probably 
air bearing table),   as well as a better control system.   It probably 
would also involve additional capital investment. 

The necessity of having a constant tare acceleration for runs 
with and without the large masses in place is a serious problem with 
our method,   and only limited experience with this problem has been 
accumulated.    In a larger sense the problem is that of comparing data 
from two runs for identical physical configurations    (except that   one 
is with and one without the large masses), certain properties of which 
are precisely known.    In addition to such effects as drifts in tempera- 
ture,  alignment,   ( tc, ,   an obviously important problem involves the 
stability of the acceleration of the small mass system as a result of 
interaction with the support system.    It is difficult to predict whether 
a quartz fiber support or a magnetic support system is potentially 
superior.    Quartz is certainly one of the most stable materials; the 
demonstration that   A sin(m0 + mp)   terms in the motion equation intro- 
duce such small errors makes the quartz fiber support much more 
attractive than thought originally.    On the other hand,  with suitable 
design care it may be possible to produce a magnetic suspension system 
which gives very much less torque than a fiber support,   and perhaps 
a very stable torque as well. 

These two problem areas are associated with the measurement 
of the acceleration of the small mass system resulting from the gravi- 
tational interaction between the small and large mass systems.    We 
speculate that the measurement of  w would not be the limit of 
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accuracy in the ultimate experiment.    Instead, the uncertainties in 
the relative geometry,  dimensions,   and mass distributions of the 
interacting systems probably would determine the limit of accuracy 
in the ultimate experiment.   A probable limiting factor is the dimen- 
sions of the small mass system (essentially the quartz cylinder in 
the present project).    Density inhomogeneities also represent an area 
of uncertainty,  both from the point of view of fabrication and that of 
detecting and correcting for their effects.    For example,   assume 
that a large mass is not quite perfectly spherical and has a signifi- 
cant variation in density.    The existence of the effect would then be 
detected by taking measurements with the sphere in different orienta- 
tions on the table.    Once the effect was detected,  it must be cor- 
rected.    Although a corrective procedure might be feasible,   it would 
probably be involved and tedious.    Density inhomogeneities in the 
small mass system, though probably of less importance because 
acceleration is the ratio of torque to moment of inertia,   are more 
difficult to study experimentally. 

In conclusion it should be noted that temperature variations and 
drifts,   external vibrations,  and alignment may present problems in 
an ultimate experiment,  although they should be solvable with sufficient 
effort.    Thermal noise levels are believed to be smaller sources of 
error. 

We anticipate that a reasonable ultimate experiment should 
attain accuracies greater than one part in 10^,  perhaps approaching 
one part in 10". 
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APPENDIX   F 

DISCUSSION AND ANALYSIS OF THE ROTATING FLAT PLATE 
NEWTONIAN GRAVITATIONAL CONSTANT EXPERIMENT 

(Prepared by D. Berman) 
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SUMMARY 

This scientific report covers one portion of a program to find 
a new experimental method of improving our knowledge of the 
Newtonian gravitational constant (G).    According to the NBS Technical 
News Bulletin (October 1^63) the presently accepted value is   6. 670  ± 
0.015x   10'^ m^kg"^ sec"^ (three standard deviations).    The rotating 
flat plate experiment utilizes the gravitational interaction    between two 
optically flat and parallel rectangular solids,   one of which is rotating 
at constant speed and the other in a resonant mount.    The experimental 
system schematic consists of a torsional suspension system for the 
resonant plate,     a   suspension   system   and   drive   for   the   rotating 
plate,    an   optical       detection system to measure the angular deflection 
of the resonant plate,  an optical interferometer system to measure the 
relative positions of the rotating plate and the resonant plate,   and a 
vacuum and external vibration isolation system for the entire apparatus. 
The analysis establishes that the gravitational interaction between the 
two plates is a second order gravitational gradient and that the dynamic 
interaction will be at twice the rotation frequency of the rotating plate. 
The magnitude of this gravitational gradient is of the order of    10"^ 
sec"^   and depends only on the density of the plate for fixed dimension 
ratios.    Similar experiments have already been carried out and it has 
been found possible to eliminate all external sources of dynamic noise 
from the detecting system except for the internal thermal noise.    An 
error analysis has been carried out on all the primary system param- 
eters to determine their required precision.    Most of the technology 
required in this experiment has been developed in previous gravitational 
experiments.    We conclude that if the interferometer techniques are suc- 
cessful and the noise isolation techniques can be extended so that the in- 
strument noise is predominantly thermal noise,  accuracies approaching 
one part in   10°   should be obtained in the measurement of the gravita- 
tional constant.    To reach this level of accuracy requires an experiment 
time or instrument response time of half a day.    The primary limitations 
ot this experiment will be density inhomogeneities in the plates,   the sta- 
bility of the mechanical damping constant,  and the nonlinearities and drift 
in the suspension system. 
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INTRODUCTION 

The gravitational constant   G   currently is known to one part 
in   500   (three standard deviations).    The most accurate of the various 
experiments to determine   G    to date is the "time of swing method" of 
Heyl.l    This experiment consists of two concentric torsion balances 
and is similar to the Cavendish apparatus (see Fig.  F-l).   One balance 
is held stationary while the other is excited into a pendulum torsional 
mode oscillation.    When the two balances are aligned in parallel,  the 
period of swing is less than when they are aligned at right angles.    In 
the former position,   the gravitational attraction between the two bal- 
ances adds to the torsional spring restoring force; in the latter posi- 
tion,   it subtracts from it.    The gravitational constant is  obtained from 
measurement of the difference in periods between the near and far po- 
sitions.     The periods were on the order of a half hour,   and could be 
measured to   0. 1 sec. 

A method of determining   G   to higher accuracy currently is 
being tested at the University of Virginia^2   (See Appendix  F of this 
report. ) This experiment is designed to improve the knowledge of   G 
to one part in   10^; with future versions,  accuracies greater than one 
part in    10^,   and possibly one part in 10°,   should be allowable.    It also 
consists of two concentric torsional balances.    One balance is free to 
rotate under the attraction of the second,  while the second is motor- 
driven and servo-controlled to maintain constant angular position with 
respect to the first.    Hence,   both balances will rota.te through   360°, 
while a constant torque is being maintained on the free balance.    The 
angular displacement,  after many hours,  determines the gravitational 
constant. 

In trying to push the determination of the gravitational constant 
to higher accuracy,   all of the various possible experiments ultimately 
approach the limitation of precision in determining the relative position 
of the masses in the system and the homogeneity of density within the 
masses themselves.    In addition,  many experiments are affected by 
spurious nongravitational forces or stray gravitational effects of nearby 
masses which are difficult to separate from the desired gravitational 
interaction forces between the source masses and the detecting masses. 

In an attempt to overcome some of these problems,  we have in- 
vestigated a dynamic Cavendish experiment design which utilizes the 
gravitational interaction between two optically flat and parallel rectangu- 
lar solids.    The generator plate is rotated at a constant speed,  and the 
detector plate is allowed to vibrate on a mount that is resonant at twice 
the rotation frequency of the generator.    The principle of operation is 
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Fig.   F-l.    Cavendish type coaxial tor- 
sion balance system. 
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basically that used by Forward and Miller    (see also Appendix),    Our 
preliminary analysis indicated,  however,   that the four-element mass 
octupole resonant structure used for the detector element in that ex- 
periment is not suitable for a high precision experiment.    The de- 
tecting structure proposed is a plate with a mass quadrupole moment 
on a resonant torsional suspension.    This type of detector is similar 
to that used in Zahradnicek's resonance experiment. 

Zahradnicek's apparatus consists of the usual two coaxial tor- 
sion balances of the Cavendish type.    One balance is excited into sim- 
ple harmonic motion at the same frequency as the resonant frequency 
of the second balance.    In both the proposed experiment and 
Zahradnicek's experiment,   the resonant response of the second balance 
builds up in amplitude many times that of an equivalent static Cavendish 
system,  thus allowing more accurate measurements.    Also, both meth- 
ods are not susceptible to errors due to the presence of nearby station- 
ary   objects.    Since the detector is a resonant system,   the response de- 
pends only on the generator masses which are moving at the proper 
frequency. 

The advantages of the proposed experiment over Zahradnicek's 
experiment are:   (1)     the relative position of all the interacting masses 
can be measured accurately with interferometer techniques (even during 
the experiment,  if required),    (2)   flat optically clear plates can be ma- 
chined to greater precision dimensionally,  and can be controlled with 
respect to density homogeneity,  and   (3)   the generating masses are 
moving at half the frequency of the detector resonant response,  and 
therefore,  predominantly all of the nongravitational noise produced by 
the generator is at a frequency that is outside the detector response 
frequency. 
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II.    SYSTEM DESCRIPTION 

The system is shown schematically in Fig. F-2.    The heart of 
the system is two precision machined plates which have optically flat 
and parallel sides.    The upper plate is suspended by a torsional 
mount,   whose stiffness is determined very precisely by prior inde- 
pendent measurement of the torsional natural frequency.    Such tech- 
niques of stiffness determination are well established,   since they are 
used in all of the important gravitational constant experiments de- 
scribed in Section I.    The accuracy required is discussed in Section V. 
The torsional fiber is subsequently mounted to a platform which is vi- 
brationally isolated from external disturbances.    The lower plate is 
connected to the rotor of a magnetically suspended rotor,   which is 
driven at constant angular speed by a servo-controlled motor. 

Precision alignment of the two plates is obtained by inter- 
ferometer techniques.    Thus,   the plates mustbe translucent, andsilver 
coctted on one side.    Using these techniques, distances can be esta- 
blished to an accuracy of   5 x 10" ' cm. 

Measurement of angular displacement can be accomplished by 
recording the deflection of a light beam off a mirror mounted at the 
center of the resonant plate.    Here,   too,   the methods have been used 
before in the experiments cited above.    In particular,   the apparatus 
developed by Dicke and Roll     gives an accuracy of   10"9 rad.    In that 
experiment,   the source of light for the optical detector was a flash- 
light bulb.     The light was focused through a narrow slit,   reflected off 
the torsion balance,  and focused again on a very narrow wire.    The 
wire was made to oscillate at its resonant frequency,   and a photomulti- 
plier was placed behind it.    When the diffraction pattern centered 
exactly on the equilibrium position of the oscillating wire,   the photo- 
multiplier detected only the even harmonics of the wire fundamental 
frequency.    When the torsion balance rotated slightly,   shifting the 
diffraction pattern off center,   the fundamental frequency became de- 
tectable in the photomultiplier output.     The output then passed through 
stages of amplification and filtering.     Thus,   the amplitude was propor- 
tional to the angular displacement,  for very small angles. 

The entire system, including motor, is enclosed in a vacuum 
system. This is necessary to avoid acoustic coupling from external 
sources,   and also to avoid air currents. 

It is obvious that in order to detect the very weak dynamic gravi- 
tational forces being generated by the rotating plate,   the generator and 
detector  must be well shielded to prevent acoustic and electromagnetic 
coupling.     The detector is highly sensitive to acoustic noise with a fre- 
quency component at its resonance frequency,  but experience has shown 
that the acoustic noise can be eliminated by placing the detector in a 
vacuum chamber at a few milliTorr. 
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Although an ideal detector is theoretically insensitive to vibra- 
tions of the mounting structure,  in practice a small amount of the vi- 
brations in the mount leak into the gradient-sensing mode.    Because 
of this,  an effort must be made to keep the detector-mount vibrations 
at a low level.    This is accomplished by suspending the detector in 
the chamber with a spri ig.     The generator is isolated from the work- 
bench by compression springs. 

Electromagnetic coupling can occur by direct interaction of the 
rotating magnetic fields of the motor with the arms of liin detector. 
Direct coupling of the rotating magnetic fields is eliminated by using 
a phase-locked asynchronous drive.    In this mode of operation of the 
generator,  the generator motor is driven by currents at some higher 
frequency so that they do not excite the detector resonant mode.    The 
amplitude of the drive voltage is controlled by a servo loop so that the 
rotor remains at a constant speed.    The servo loop can be made so 
tight that both the frequency and the phase of the rotor can be held 
tightly to the phase of a reference signal from a precise oscillator. 

Dynamic gravity devices which are similar to this experiment 
in many ways, have been operated successfully at Hughes Research 
Laboratories^ (see Appendix).    These devices have been perfected to 
the sensitivity level of thermal noise; all other sources of external 
disturbances have been reduced to less than this.    Because of the 
similarities in design,   we expect that with sufficient effort the noise 
disturbances of the flat-plate Cavendish experiment also will be deter- 
mined predominantly by thermal noise. 
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III.    GRAVITATIONAL INTERACTION 

The determination of   G   requires a precise calculation of the 
gravitational interaction of the two plates.    This calculation involves 
integrating the effect of each element of mass of the rotating plate on 
the elements of the resonant plate.    The tangential component of the 
gravitational force gives the torsional coupling, from which the re- 
sponse (and therefore   G)   is determined. 

The configuration for calculating the gravitational interaction 
The gravitational potential   xl is shown in Fig.   3. 

mass in   V1   is: 
at   r   due to all 

/ 
Gp dV 

(1) 

where   r     is a function of   9    as the plate rotates. 

The tangential component of the gravitational force is given by 

dF   = 
Gp dV* i 0 (2) 

where   6   =   unit vector in direction of rotation. 

The integral over all   r   on the plate gives the total interaction: 

F   =   Gp 
1 

r -  r dV   dV (3) 

In this paper,  we do not propose to carry out the integration 
indicated in eqs.    (1)   through   (3).     We shall assume that the mathe- 
matics may be carriad out with any desired degree of accuracy,   and 
that the expei itaent will be limited only by laboratory measurement. 

In order to estimate the gravitational interaction of the two 
plates,  we shall consider only their gravitational quadrupole moments. 
Thus,  we lump the mass of each as shown in the configuration of Fig. 4. 
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In the appendix, it has been shown that a quadrupole gravita- 
tional detector is excited by a quadrupole generator. The excitation 
is given by: 

F   =   (GMm d/R3)    6Acos 0 + 35A3 cos3 9 +^  A5 cos5 9 

.    6435     A7 7 Q , +   —3—    A   cos    9 + sin (4) 

Z 2        2        2 
where   A  =    i d/R   ;R   =   i    +d+h;      M    =.   generator mass, 
m   =   detector mass.        9     =      nt   is the rotational angle,  for con- 
stant angular frequency  n.    To simplify,  we invoke the trigonometric 
identities: 

8 cos    9 sin 9   =   sin 4 9 + 2 sin 2 9 

5 
32 cos    9 sin 9   =   sin 6 9 + 4 sin 49 + 11 sin 2 9 

etc. 

Substituting these into   (4)   yields: 

(5) 

(GMm d/R  )  3A 1+15A2+n55   A4 
1 + 12        +   128 + sin 212t 

(6) 

We have dropped the higher order terms in n,  keeping only 
the lowest at   2 J2.    Hence,   the dominant driving force on the detector 
will be at a frequency that is twice the generator rotation frequency. 
For very close distances between generator and detector,    h   is small 
compared with   d   and   i,  and we have as the limiting value of    A 
(for   i    =   d): 

A   =   id/R2 « id 

i2 + d2 

For   A =   0. 5,   the series indicated in eq.  (6)   converges to   4. 0.   The 
excitation then becomes: 

F   =   (6 GMmd/R3) sin 2 nt   a   2G^tm   sin 2m. 
d^ 

(7) 
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With the driving force given by eq. (7), we may calculate the 
detector response from the second order equation for a damped har- 
monic oscillator: 

a + 
2T 

Q   +   w    a o 
T/I   = r sin znt (8) 

where 

a = displacement angle 

w = resonant frequency 

T - detector time constant 

T = torque   =   Fd 

I = moment of inertia   =   2md 

F       =   gravitational gradient. 

Evaluating the driving term 

r  = GM 
,3 (9) 

which has the units of sec   fa   and which depends on the mass and size 
of the generator (which is the same size as the detector).    These 
quantities are related,  of course,   so that we can reduce   (9)   to be a 
function only of density for a plate of fixed proportions. 

Figure F-5 demonstrates the meaning of the parameters in our 
quadrupole model of a flat plate.    We fix the relative proportions to 
be such that the plates are ten times longer than wide,   and one tenth 
as thick.    The first relative dimension assures a dominant quadrupole 
moment,   and also allows us to ignore the noninteracting circular mass 
distribution in the center.    The second dimensional criterion (thickness) 
assures that the mass separation distance is negligible.    Hence,   the 
following relations hold for large dimension   L 

M   =    p (L/2) (L/10) (L/100) 

=   p L3/2000 

(where   p   is the specific density of the plate),  since   M   corresponds 
to half the quadrupole moment.    Also,   d   =   L/4   since the average 
mass is approximately this distance from the axis of rotation. 
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Fig.  F-5.   Parameters of flat plate. 
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Substituting these values into   (9)   yields: 

T    =   Gp (L3/2000)/(L3/64) 

=   0. 03   Gp   =    2p E.U. (10) 

This indicates that the gravitational interaction is predominantly a 
function of the density of the material used in the generator.    Because 
the material used must be nonconductive,  nonmagnetic,   and trans- 
parent,   we shall be limited to densities of the various glasses.   There 
are glasses such as lead oxide with a specific density of   9. 5.    However, 
the most dimensionally stable glass is fused quartz with   2.3.    By prop- 
er choice of material we can hope to maintain dimensional stability 
while maximizing density.    In this way,   we can expect to obtain gradi- 
ents on the order of    F  =    10 E.U. 

The deflection due to a gravitational excitation is found from 
the solution to eq.  (8):   at resonance (for zero initial conditions): 

Urx/«  ) (1 - e"1'1") sin u t x      ^   o' x ' o (ID 

Equation   (ll)   is plotted in Fig. F-6 for the special case where the time 
constant equals    10 times the natural period,    T   =    10(2i7/cüo).    We see 
that to maximize the resonator deflection,   the amplitude must build up 
over a number of cycles of oscillation.    For a fixed time constant   T, 
the amplitude for fully developed oscillation is inversely proportional 
to the natural frequency   CJ  .    It is therefore advantageous to use as low 
an   w0   as possible,   from the standpoint of optical measurement of the 
deflection angle   (Section II).    The lower limit to   a)0   is determined by 
the ability to support the resonant plate in a    1 g   environment. 

F-15 



w 

0) 

n) 

a 
*J 

c 
nl 
C 
O 
tn 
V 
M 

0 
V 
CO 
c 
0 
<x 
in 
<u 
u 

r 

| 

« 

aamndwv 

F-16 

■-,■:.:.'■- - 



IV.    SIGNAL-TO-NOISE 1 

The magnitude of angular deflection of the resonant plate due 
to gravitational coupling depends on the natural frequency and time 
constant   T   (see eq.   (11)).     This amplitude must be large enough to 
dominate any nongravitational disturbance coupling by the factor of 
precision required in the experiment; in this case we consider a 
signal-to-noise ratio of    10°.. 

In the previous dynamic gravitational experiments described 
in the Appendix,   all sources of vibrational,   acoustic,   electromagnetic, 
etc. ,   noise were negligible compared with the thermal noise in the 
device.    This thermal noise is the limiting sensitivity in any instru- 
ment,  because it is a thermodynamic molecular motion and depends 
only on temperature. 

In order to determine the angular deflection of the gravita- 
tional detector due to the excitation of thermal noise,   we will calcu- 
late the stored energy in a resonant harmonic oscillator.    The energy 
is stored partly in the kinetic energy and partly in the potential energy 
of the spring: 

E   =   KE + PE   = 
1 T • 2  ,   1    2    2 
2 2      O 

(12) 

The deflection   Q   is obtained from the solution of eq.  (8) at steady 
state: 

a   =   a    sin 201 n (13) 

Substituting   (13)   into   (12)   yields   (at   u     =    2 f2): 

rr lT/22        2       ..   .1T22.2       .        1T22      ,,„. E   =   ^-I (w   a   cos    cj  t) + — I u   a   sin    u  t   =-7 I u    a      .(14) 
2,n o'2 n o 2on' 

The amplitude     an   of the oscillations,  when the total energy 
in the vibrational mode is just the thermal energy (kT)   required by 
the equipartition theorem,   is: 

a n 
2 kT 

,1a,2 

1/2 2 kT 
M 

1/2 
1000 kT 1/2 

CJ  d 
o u  L o 

5 ' 

(15) 
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a   = 2 r T/O) (16) 

The signal-to-noise ratio is then obtained by dividing   (16)   by   (15): 

a /a     = 
g     n    ' 

FT 
4 

(   P   ^ 
^1000 kTJ 

1/2 
5/2 (17) 

We see that   Q-g/a     is proportional to the time constant and independent 
of natural frequency. 

To obtain an accuracy of   one part in   10  ,  for example,   we 
must have 10^ ag/Qn 
of   L   -   50 cm,  we solve 

Using this value,  and a nominal dimension 
(17)   for  T.    The result is   T   =   6 x 104 sec, 

or about   half a day.    This amount of time is a typical requirement for 
conducting a gravitational constant experiment, '    and it is not unreason- 
able to maintain stability of the system parameters for that length of 
time. 

When attempting to make   w     as   low as possible,   the limit is 
determined by the ability of the sensitive torsion fiber to support the 
resonant plate in a   1 g   environment.    In the literature we find that 
natural periods of   1000 sec (w0 «   0. 01 rad/sec)   are common for 
torsional balances on the order of   100 g.    A system with   L = 50 cm 
weighs   625 g,  which is not unreasonable for a low   u)0   suspension. 

Returning to   (16)   and using the values 
4 

T      =6x10    sec 

T      =    10 EU   =    10 x 10"9 sec"^ 

w      =   0.01 rad/sec, o '        ' 

we calculate the gravitationally induced deflection of the resonator; 

F-IS 

1 

Thus,   the deflection due to thermal noise depends inversely on detec- 
tor size and natural frequency. 

To compare the thermal noise response with the gravitational 
response,   we express the amplitude of   (11)   as: 

^MM»»a^ 



a     = 
g 

(2) (10 x 10  r 
-9 )(6 

4 
10   ) 

01) 
«   0. 1 rad 

Ly large angle.    However,  for the measurement to be 
°   implies a detection sensitivity of   10"^ rad.    Using 

which is a fairl 
precise to   10 
techniques described in Section II,   we can expect to obtain this 
accuracy. 
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ERROR ANALYSIS 

Equation (16) expresses the deflected angle as a function of the 
gravitational gradient,   where   F   =   GM/d^   for the ideal mass quadru- 
pole model.    In the real case,   the gravitational mass is not lumped at 
two discrete points,  but instead is distributed over the extended   di- 
mensions of the plate.    Thus,   the values   M   and   d   represent the ef- 
fective gravitational quadrupole moment of the rectangular mass dis- 
tribution.    These values must be calculated by techniques discussed 
in Section III (eq.  (3)),  following a precise measurement of the physi- 
cal plate dimensions and total mass.    However,   it is of primary im- 
portance to facilitate a precise physical measurement.    The mathe- 
matical conversion can always (in theory) be accomplished with any 
desired accuracy.    Because of the flat-plate geometry,   we can mea- 
sure dimensions to greater accuracies than other geometries by using 
interferometer techniques.    In this way,   we can measure the dimen- 
sions and displacements to   5 x 10"' cm. 

To estimate the achievable accuracy of this flat plate dynamic 
Cavendish experiment,  let us solve   (16)   for   G (using (10)): 

G   =    a  d3 w /2 T M     . (18) 
go' 

-7-8 
The percentage error in   d   will be   5x10    /50   =10     ,  well within 
an accuracy of one part in   10°.    Also,   since   M « 10    g,   the necessary 
precision requires only the measurement of milligrams,  and this should 
not be limiting.    Of course,   the uniformity of density over the extended 
plate dimensions must also be accurate to one part in   10  ,  but here 
again,  because of the flat plate geometry and transparent materials,  we 
can use optical techniques    such as measuring the index of refraction. 

We have already stipulated that for   a     to be measured to an 
accuracy of   10"",  the amplitude must build up over many resonant 
oscillations to a value of   0. 1 rad.    (This required a system time con- 
stant of half a day. )   Therefore,   the accuracy of angular measurement 
should not be limiting.    In addition,   the system time constant   T   is on 
the order of   10-' sec,  and thus needs to be accurately known only   to 
0. 1    for the required experimental precision. 

In addition to the above,   this experimental method also requires 
the accurate determination of the resonant frequency   u0.    Even though 
the natural period   (2IT/U0)   is very large   (1000 sec),   a    10"    require- 
ment would mean that it must be accurate to   1 msec. 
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The separation distance is an implied parameter because, 
from   (4),    R^   =   2d^ + h^.    Thus, when   h   «   d,  as in the present 
case,    h   is only a second order consideration.    For very closely 
spaced plates of several millimeters thickness,    h ~  0. Z,  whereas 
d   ~   10 cm. 

The separation distance   h   is not as critical a parameter 
as may have been expected.    This may be seen by the following: 

R 2d2 + h2 
1/2 

a   \rZd (l + h2/4d2 
) 

2/2 "^ Evaluating,    h /4d     »10     ,  which need be known only to three 
significant places.    To measure   h   to three significant figures re- 
quires an accuracy of only   10"^ cm. 
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VI.    CONCLUSIONS 

The proposed "Dynamic Cavendish Experiment" is similar to 
the "Resonance Method" of Zahradnicek, but with the important ex- 
ceptions of flat-^jiate geometry and second-harmonic gravitational 
excitation.    In pushing the gravitational constant to higher and higher 
accuracy,  morn precision is required in the measurements of the 
system parameters.  Flat-plate geometry lends itself to dimensional 
measurements by interferometer techniques, and thus removes the 
accuracy limitations imposed in conventional techniques.    The use of 
second-harmonic excitation eliminates a potentially troublesome 
source of noise. 

In this report,  we have estimated the gravitational interaction, 
and calculated the signal-to-noise ratio for the flat-plate experiment. 
We have established all primary system parameters,  as well as their 
required precision.    Most of the technology required in this experi- 
ment has been developed in previous gravitational constant experi- 
ments.    Thus we conclude that if interferometer techniques are suc- 
cessful,  an accuracy of   10"      can be obtained. 
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Generation and Detection of Dynamic Gravitational-Gradient Fields*! 
ROBERT L. FORWARD AND LARRY R. MILLERJ 

Hughes Research Laboratories, Malibu, California 

(Received 5 August 1966) 

We have constructed a generator of dynamic Newtonian gravitational-force-gradient fields and used it 
as a signal generator to calibrate the response of the gravitational-gradient detectors being developed in our 
research work on gravitational-mass sensors. The gravitational-gradient-field generator is a flat aluminum 
cylinder 14 cm in diameter, with four holes than can be filled with slugs of different density to create a 
rotating mass-quadrupole moment. The generator is mounted on an air-bearing-supported motor and 
rotated at a nominal speed of 44 rps (2640 rpm). Because ot the bisymmetric mass distribution, the dynamic 
gravitational-gracient fields generated have a frequency of 88 Hz, or twice the rotation frequency. The 
detector is a 12-cm-diam cruciform-shaped structure which responds to 88 Hz gravitational-gradient forces. 
The small (10"" cm) motions induced in the detector arms are sensed by piezoelectric strain transducers 
attached to the arms near the point of maximum strain. A simple vacuum system, an iron shield plate, 
and spring mounts suffice for acoustic and magnetic isolation, since most of the nongravitational noises were 
generated at 44 Hz, the rotation frequency, rather than at 88 Hz, the gravitational-gradient frequency. 
Data taken w ith four different mass distributions varying from 0 to 1000 g and separation distances varying 
from 4.8 to 12 cm agree well with the theory, indicating that only gravitational energy was being transmitted 
from the generator to the detector. The minimum dynamic gravitational-gradient field observed during 
this test was 6X10"' sec"' or 0.002 of the earth's gradient. The equivalent differential acceleration exerted 
on the sensor arms by this field was 3X10"11 g's. 

INTRODUCTION 

WE are engaged in a program to design, construct, 
and test a research model of a gravitational-mass 

sensor which can measure the mass of an object at a 
distance by using a rotating system of masses and 
springs (see Fig. 1) to detect the gravitational-force- 

FIG. 1. Five-in.-diam cruciform gravitational-mass sensor. 

gradient field of the object.12 The ultimate objective 
of our work is to develop a small, rugged sensor to be 
used on spinning lunar orbiters to measure the mass 
distribution of the moon and on spinning deep space 
probes to measure the mass of the asteroids. 

Our primary goal in this research project is to develop 
methods of rotating the gravitational-mass-sensor struc- 

• Work partially supported by the National Aeronautics and 
Space Administration. 

t Presented at A.P.S. Summer Meeting, Minneapolis, Minn., 
20-22 June 1966; also Gravity Research Foundation Essay, 
New Boston, N.H., 15 April 1966. 

t Presently on leave of absence on a Hughes Master of Science 
Fellowship at the University of California, Berkeley, Calif. 

1 R. L. Forward, in Proceedings of the Symposium on Un- 
conventional Inerlial Sensors (Republic Aviation Corp., Farming- 
dale, New York, 1963), pp. 36-60. 

' R. L. Forward, Proc. AIAA Unmanned Spacecraft Meeting 
(AIAA, New York, N. Y., 1965), pp. 346-351. 

tures without introducing large amounts of noise into 
the gravitational-gradient sensing mode, so that we 
can demonstrate the required degree of sensitivity in 
the laboratory without requiring flight tests to prove 
engineering feasibility. At present, we have demon- 
strated that we can measure accelerations down to 
2X10~7 g's while operating in a 450-g rotational en- 
vironment and a 1-g gravitational environment. The 
force level due to the earth's gravitational gradient is 
one order of magnitude below this. The noise problems 
are not fundamental and work is continuing on methods 
for lowering the noise level to the point where static 
gravitational gradients from laboratory masses can 
be seen. 

A concurrent objective of our work is to learn enough 
about these structures to be able to predict their re- 
sponse to gravitational-gradient fields. The theoretical 
portion of this work is largely completed and was re- 
ported at the AIAA Second Annual Meeting.' In order 
to verify the equations experimentally and to develop 
a test system for calibrating the gravitational-gradient 
response of the various sensors, we have constructed a 
rotating generator of dynamic Newtonian gravita- 
tional-force-gradient fields and have measured the re- 
sponse of one of our sensors to these fields.4 This work 
is similar to that of Weber el al. at the University of 
Maryland,6 who utilized a vibrating rod to generate 
1.6-kHz dynamic gravitational fields for calibration of 
a gravitation radiation detector.' 

• C. C. Bell, R. L. Forward, and J. R. Morris, "Mass Detection 
by Means of Measuring Gravity Gradients," presented at AIAA 
Second Annual Meeting, San Francisco, Calif., 26-29 July 1965; 
also AIAA Paper 65-403. 

«R. L. Forward and L. R. Miller, Bull. Am. Phys. Soc. 11, 
445 (1966). 

6 J. Sinsky, J. Weber, D. M. Zipoy, and R. L. Forward, Bull. 
Am. Phys. Soc. 11, 445 (1966). 

•J. Weber, "Gravitational Waves," in Gravitation and Rela- 
tivity, H.-Y. Chiu and W. F. Hoffman, Eds. (W. A. Benjamin. 
Inc.,.New York, 1964), p. 100, Chap. 5. 
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513 DYNAMIC   GRAVITATIONAL-GRADIENT   FIELDS 

DYNAMIC GRAVITATIONAL-GRADIENT-FIELD 
GENERATOR 

The generator of the dynamic gravitational-gradient 
fields is shown in Fig. 2. The drive unit for the generator 
is an air-bearing support and drive which was originally 
designed to rotate a sensor structure. The bearing 
table supports an aluminum mass holder 14 cm in 
diameter with four holes, 5.0 cm in diameter and 3.5 cm 
deep, on a radius of 4.0 cm. Opposite pairs of holes 
can be filled with either aluminum, brass, or tungsten 
slugs which slip fit into the holes. The various pairs of 
mass slugs were trimmed so that static and dynamic 
balance of the generator was achieved even though the 
mass holder has a mass-quadrupole moment. When 
balanced, the motor-generator combination is silent 
under all combinations of speed and mass-quadrupole 
loading, except for a slight, high-frequency hiss of the 
support air passing through the bearing. The motor 
can be operated in either a synchronous drive mode 
or a phase-locked asynchronous mode. The readout of 
the generator rotation speed and phase is obtained 
through a photoelectric pickoff which detects paint 
marks on the rotor. This photoelectric signal is used 
as the reference signal for a lock-in amplifier, and in 
the asynchronous mode can also be used to supply 
pulses for the asynchronous drive controller. 

The masses of the various slugs used are 

Tungsten 1212.0 g. 
Brass 606.0 g, 
Aluminum 200.0 g. 

If four aluminum slugs are used, the generator has no 
mass-quadrupole moment. The maximum mass-quad- 
rupole moment of 3.8X104 g-cm2 is obtained when two 
tungsten slugs are used and the other two holes are 
left empty. When the opposing pair of holes is filled, 
the effective mass is just the mass difference. The 
various combinations possible with our present setup 
are listed below. 

Holes 1 and 3 Holes 2 and 4 Efeciive Mass 
Tungsten Empty 1212.0 
Tungsten Aluminum 1012.0 
Tungsten Brass 606.0 
Brass Empty 606.0 
Brass Aluminum 406.0 
Aluminum Empty 200.0 
Aluminum Aluminum 0.0 

: 

FIG. 2. Dynamic gravitationai-gradicnt-ficld generatQt. 

FIG. 3. Adjustable sensor. 

The generator rotates at a nominal speed of 44 rps 
(2640 rpm); because of the bilateral or tensorial char- 
acter of the mass-quadrupole generators, the ac gravi- 
tational-gradient fields generated are at 88 Hz, or twice 
the rotation frequency. (See Appendix.) 

DETECTOR 

The detector used in this first test was one of our 
adjustable sensors (see Fig. 3). The sensing masses of 
the detector are 20-g brass weights attached to the 
sensor arms by a screw-clamp arrangement. The weights 
have an eccentric cam arrangement which allows for 
small position adjustments on the arms. The arms are 
cantilever beams of aluminum with a 0.125-in.-thick 
base where they fasten to the hub and an outer bending 
portion 0.030 in. thick and about 0.70 in. long. The 
aluminum hub is designed to clamp the arms rigidly 
for good cross coupling and yet allow the arm-mass 
assembly to be moved in and out for mass balance of 
the final assembly. 

The detector has a resonant frequency of 88.45 Hz 
in the dual tuning fork or gravity-gradient sensing 
mode (see Fig. 7 in the Appendix), a Q of 120 and 
an arm length of /=5.0 cm. Under the influence of a 
gravitational gradient of F s,m2ül, the arms respond 
with a vibrational amplitude of [see Eq. (A21) of the 
Appendix] 

A=[Q//(2n)!!]r cos2n<= 1.95X10-« cm/sec2 F cos2n<I 

(1) 
where 2n = 27rX88.45 rad/sec. 

The readout of the detector vibrations is accom- 
plished by sensing the dynamic strains of the detector 
arms with barium titanate strain transducers. (Gulton 
Ind. type SC-2). A pair of transducers were reversed 
from the arrangement shown in Fig. 3 so that opposing 
pairs of transducers would produce a differential output 
voltage which could be fed into the differential input of 
a Princeton Applied Research HR-8 lock-in amplifier. 

The dynamic strain in the arms due to their deflection 
is a strong function of the details of the design of the 
detector arms, and is difficult to calculate accurately 
because of the complex mechanical structure used. The 

■'     I 
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relationship predicted in Ref. 3 is 

t = [(ft+L)c/(iI'+6L2+62Z.)]A=0.026 cir.-'A,    (2) 

where 6=0.3 cm is the radius of the end mass, £,= 1.8 
cm is the length of the arm, and c=0.038 cm is the 
half-thickness of the arm. 

The barium titanate strain transducers extend over 
a considerable portion of the arm; therefore, they 
measure an averaged value of the strain, which is a 
maximum at the hub and zero at the end. This average 
measured strain was estimated as 

€l=0.6«=0.016 cnr'A. (3) 

The transducers used on the detector had been cali- 
brated on a test setup which compared them with a 
resistive strain gauge using pure longitudinal strains 
at 1600 Hz. The transducer factor obtained under these 
conditions was about (r = 0.7X105 V/unit strain. Thus 
the voltage output from this sensor should be approxi- 
mately 

F=<7«(=l.lX103V/cmA = 2.2V-seci!rcos2^.    (4) 

NONGRAVITATIONAL COUPLING 

It is obvious that in order to detect the very weak 
dynamic gravitational forces being generated by the 
rotating mass quadrupole, the generator and detector 
must be well shielded from each other to prevent 
acoustic and electromagnetic coupling. The detector is 
highly sensitive to acoustic noise with a frequency 
component at its resonance frequency, but experience 
has shown that the acoustic noise can be eliminated by 
placing the detector in a vacuum chamber at a few 
mTorr. 

Although an ideal detector is theoretically insensitive 
to vibrations of the mounting structure,3 in practice a 
small amount of the vibrations in the mount leak into 
the gradient-sensing mode. Because of this, an effort 
must be made to keep the detector-mount vibrations 
at a low level. This was accomplished by suspending 
the detector in the chamber with a spring, and the 
chamber from the ceiling by another spring. The 
generator was isolated from the workbench by com- 
pression springs, and the iron-shield plate was vibra- 
tionally isolated from both the generator and detector 
by its own support springs (see Fig. 4). 

Electromagnetic coupling can occur in two ways: 
(1) by direct interaction of the rotating magnetic 
fields of the motor with the arms of the detector; 
(2) by stray electromagnetic voltages or currents enter- 
ing the detector output leads or the preamplifier. The 
electromagnetic coupling into the output electronics is 
easily checked, since it is independent of the resonant 
response of the detector and was found to be un- 
observable even in the single-ended mode of operation, 
although all data were taken with a differential input 
to insure that pickup was not a problem. 

Direct coupling of the rotating magnetic fields around 

the generator motor into the detector was found to be 
a major problem. At first it was not well understood, 
since the detector arms were of aluminum and the 
detector masses of brass. This interaction was originally 
eliminated by using a phase-locked asynchronous drive. 
In this mode of operation of the generator, the generator 
motor is driven by currents at some higher frequency, 
typically 200 Hz, so they do not excite the detector 
resonant mode. The amplitude of the drive voltage is 
controlled by a servo loop so that the rotor remains at 
a constant speed of 44 rps. The servo loop is so tight 
that both the frequency and the phase of the rotor are 
held tightly to the phase of a reference signal from a 
precise oscillator (General Radio frequency synthe- 
sizer). It was later discovered that the detector had 
been assembled with stainless steel screws; when they 
were replaced by brass screws, the magnetic coupling 
was eliminated and it was possible to take good data 
using synchronous drive on the generator. 

One important factor aided greatly in the problem 
of eliminating the nongravitational coupling between 
the generator and the detector. Because of the double 
mass in the mass quadrupole, the generator is rotated 
at half of the detector frequency. Therefore, predomi- 
nantly all of the acoustic and electromagnetic energy 
produced by the generator is at a frequency which is 
outside the detector-response frequency; only that small 
portion of the energy which is harmonically generated 
at twice the rotation frequency must be shielded against. 

FIG. 4. Relative poiition of generator and dctcctur. 
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The generator was designed specifically for the prob- 
lem of determining the nongravitational-coupling ef- 
fects. If four aluminum slugs are put in the mass holder, 
the generator has no time-varying mass-quadrupole 
moment and therefore no dynamic gravitational-gra- 
dient field; however, it still retains all of its electro- 
magnetic and acoustic properties. A test run was made 
at 5 cm separation distance using the four aluminum 
slugs. The generator speed was varied from 43 to 45 
rps, so that the detector-mode frequency of 88 Hz was 
not missed. The detector output remained at 0±4 nV. 
The rotor was then deliberately unbalanced so that 
the acoustic output was noticeably increased and the 
test was rerun, with the same results. These experi- 
ments demonstrated that the response of the detector 
structure and sensor electronics to nongravitational 
forces arising from all sources, including the generator, 
was less than 4 nV. 

DETECTOR CALIBRATION 

After the test for nongravitational coupling, two of 
the aluminum slugs were replaced with tungsten slugs, 
resulting in a mass difference of 1012 g. The rotor was 
rebalanced and the generator and detector were placed 
5 cm apart. The theoretical calculations presented in 
the Appendix indicate that at this distance, and with 
this size detector, a 1012-g effective mass should pro- 
duce an equivalent gravitational-force gradient of 

T sin2fi/= 1.25X1^' sinlQt sec"2. (5) 

The dynamic gradient has an amplitude of about 0.04 
of the earth's static gravitational-force gradient. 

From the theory of operation of the sensors,' this 
gradient should cause the gravitational-gradient sensing 
mode of the detector to oscillate with an amplitude of 
[seeEq. (1)] 

A=2.SXlO-10cos2fiicm. (6) 

Although the amplitude of these motions is extremely 
small, of the order of 0.01 of the diameter of an atom, 
they are easily measured if piezoelectric strain trans- 
ducers are used. Similar sensing techniques used on the 
gravitational radiation detectors at the University of 
Maryland6'' have measured motions down to lO-14 cm. 

The motion induced in the detector causes an average 
strain in the arms of [see Eq. (3) ] 

«,=3.9X10-12cos2n/. (7) 

If we assume that the transducer calibration is 
ff=0.7X106 V/strain, the predicted output of these 
sensors under excitation by a generator with a 1-kg 
mass difference at a 5-cm separation distance would be 
[see Eq. (4)] 

F = 2.2V/sec2rcos2n/ 

=270 cos2JW nV (predicted),   (8) 

or an rms voltage of 190 nV. 

When the test was run, the actual measured output 
voltage of one arm of the sensor under these conditions 
was 97±3 nV (rms). This is much larger than the 
output-voltage fluctuations of ±4 nV under the control 
conditions using the four aluminum masses, and is 
almost exactly half the predicted output. The reason for 
this lower output is not known. It is assumed that it is 
a result of the difficulty in obtaining an accurate cali- 
bration of the strain transducers, or in calculating the 
strain from the deflection A. Further experiments are in 
progress to resolve the question. The gravity-gradient 
input to detector-voltage output relationship for the 
adjustable detector obtained from this calibration is 

7=1.1 V/sec2rcos2n/. (9) 

VERIFICATION OF GRAVITATIONAL COUPLING 

Although the control experiments with the four 
aluminum slugs and the balanced and unbalanced rotor 
indicated that the nongravitational coupling was negli- 
gible, it was still possible that the replacement of the 
aluminum slugs with the tungsten slugs could change 
the magnetic moment or balance of the generator and 
cause nongravitational coupling. In order to further 
insure that the voltage output seen was caused only 
by gravitational-gradient coupling, a run of data was 
taken at various separation distances and with various 
mass-quadrupole moments. (One of the aluminum slugs 
froze in its hole in the generator during the preliminary 
work so it was possible to try only four different mass- 
quadrupole arrangements.) 

At the start of the experiment, the phase of the lock- 
in detector was adjusted to give a maximum output 
with the tungsten slugs and was not adjusted or peaked 
during the remainder of the data run. The quadrature 
voltage was monitored periodically to insure the de- 
tection of any phase shift in the signal induced by any 
variation in the relative strength of the gravitational 
coupling and any synchronous nongravitational coup- 
ling. No quadrature component was detected during the 
data runs. 

With the tungsten slugs in the generator, a set of 
data was taken while the separation distance was 
varied from 4.8 cm to 12 cm. The generator was then 
stopped and the tungsten slugs replaced with brass 
slugs, resulting in an effective mass difference of 406.0 g. 
Without adjustment to the sensor electronics, a second 
set of data was taken from 4.8 to 10 cm. The generator 
was again stopped and the brass slugs removed, leaving 
a void or relative mass difference of —200 g. The phase 
knob of the lock-in detector was switched exactly 180° 
to account for the effective negative mass, or 180° 
signal-phase difference, and the third set of data taken 
from 4.8 cm to 8 cm. When aluminum slugs were 
placed in all four holes, the output was 0±3 nV. 
The data are plotted in Fig. 5. 

Curves of detector output versus separation distance 
were then calculated and plotted in Fig. 5 for various 

I 
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FIG. 5. Dynamic gravitational coupling between rotating mass 
quadrupole and cruciform gravitational-mass sensor. 

mass-quadrupole moments using the theoretical Eqs. 
(A-15) and (A-16) derived in the Appendix. For con- 
version of the calculated equivalent gravitational-gra- 
dient field to sensor-voltage output, we used the cali- 
bration point at 5 cm and 97 nV (larger data point). 
The two lower curves are the upper curve multiplied 
by 0.4 and 0.2, respectively. 

The excellent agreement of the data with the theo- 
retical predictions in amplitude and phase for various 
conditions of mass-quadrupole moment and separation 
distance indicates that only gravitational energy was 
being transmitted from the generator to the detector. 
The minimum dynamic gravitational-gradient field ob- 
served during this test was about 6X10-9 sec-2 (6 
Eötvös units) or 0.002 of the earth's gradient. The 
effective differential acceleration on the S-cm-long de- 
tector arms due to this field was 

a=r/=3XlO-'cm/sec2=3X10-11 g's,      (10) 

and the effective force level on the 20-g detector masses 
was 

f=»ia=6X10-7dyn. (11) 

SUMMARY 

We have constructed a generator of 88-Hz gravi- 
tational-gradient fields and used the fields to calibrate 
the response of a dynamic gravitational-gradient sensor. 
The test involved the transmission of gravitational 
energy over distances up to 12 cm by means of dynamic 
Newtonian gravitational-gradient fields. 

APPENDIX: GRAVITATIONAL INTERACTIONS 
BETWEEN A CRUCIFORM DETECTOR AND A 

ROTATING-MASS QUADRUPOLE 

The model which we will use to calculate the gravi- 
tational interaction between a rotating-mass quadrupole 
and a resonant cruciform gravitational-mass sensor is 
shown in Fig. 6. The generator is assumed to be two 
spherical masses of mass M separated by a distance 
2d and rotated about their center of mass at a constant 

angular frequency d=ü. The detector is assumed to be 
four spherical masses of mass m on orthogonally dis- 
posed massless arms of length I, The sensor is supported 
from above so that its center of mass is at a height A 
directly above the center of mass of the generator. 
The particular mode of the sensor used to sense the 
gravitational-gradient forces is the dual tuning-fork 
mode (see Fig. 7). It was shown in previous analyses' 
that this mode does not respond to vibrational forces 
at the mount nor to the direct gravitational force field, 
but only to the gradient of the gravitational force field. 

The forces on the sensor resulting from the gravi- 
tational interaction between the rotating masses Me 
and the sensor masses Wj typically consist of 

FiC = - GMm/RiJ1,   t = 1 to 4, c=a, 6, w,=w, Af c=M, 

(Al) 
where 

and 

Ric2=h*+rJ, (A2) 

r8o2=ri0
2=^+rf2-2Wcose, 

rv*=rli
3=P+d'+2ldcosB, 

»■4«2= ria
i=P+(P-2ld sinö, 

rj= r»2i= P+tf+lld sinfl. (A3) 

However, the components of the forces which drive 
the sensing mode of the detector are the tangential 

SIDE VIEW 

FIG. 6. Model for gravitational-interaction calculation. 
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components of the forces F* 

Ft.'« FyJ^ {GMm/R^d sin», 

F»'= f u'= - (GMm/R^dsinB, 

F^^ ?„,'= _ {GMm/R**)d cosB, 

Fu'=F»' = {GMm/Rvf) d cos», (A4) 

where the sense of the forces is taken to be positive in 
the clockwise direction. 

The resultant force F,' on each of the arms due to 
the forces FJ is given by 

Fi' = Fi'=Fia'+Fu,' 

=GMmdl{\/Rut) - (l/Rvf) ] sinfl, 

F4' = Fj' = fJa'+Fjn' 

= -GMmdl{l/Rtaz)-{l/R»i)^cose.    (AS) 

The response of the detector arms to these resultant 
forces has been presented in a previous work by Bell, 
Forward, and Morris.' Taking a simplified version of 
their Eqs. (38) through (41), we obtain 

mÄrHÄd-*A.= F/,       t=l-4, (A6) 

where A,- is the deflection of the tth arm, k is the spring 
constant, and d is the damping. 

These four equations (A6) describe the individual 
motions of the four arms; however, the vibrations of 
interest are the motions of the gravity-gradient sensing 
mode (see Fig. 7). The equation for this mode is ob- 
tained by the following linear combination of the indi- 
vidual arm motions7 

^=i(Ai-A2+A,-A4), (A7) 

where the normalization factor of § is used so that the 

FIG. 7. Gravity-gradient sensing mode. 

detector energy expressed in terms of the four arm 
amplitudes is equivalent to the detector energy ex- 
pressed in terms of the four vibrational mode amplitudes 
(gravity gradient, torsional, and two translational) .7 

If we add the equations for the four arm motions 
[Eqs. (A6) ] in this manner, we obtain the equation of 
motion for the gravity-gradient sensing mode 

wÄ.+dÄ.+M^KF.'-Fj'+F.'-F«') = F„    (A8) 

where 

Ft~Giimd[l{l/Ria*) - (l/2?u«)] sin» 

+C(l//2Ja«)-(l//?»,)]coSe}.    (A9) 

Because Ru is a function of the angle 0, the resultant 
force Fg has a complex behavior with the angle of 
rotation. To calculate the components of the resultant 
force as a function of frequency, we will expand the 
terms in /J.e-8. Letting 

B?=P+#+h\ (A10) 

we can write the resultant force Fa as 

F^GMmdiliK-lld cosß)-*'*- {R2+2ld cosO)-"2] sin9+[(Ä!!-2W sinö)-»'2- {Rt+lld smfl)-"2] cos«|.    (All) 

Bringing F2 out from the denominator and letting A= {ld/R2), we obtain 

Ft= {GMmd/R>){l{l-2A cosö)""2- (1+2A cosö)""2] sine+[(l-2A sinff)-"2- (1+2A sinö)-"2] cos»|.     (A12) 

We now expand each term using the binomial expansion theorem; however, because the expansion parameter A 
can be as high as J when the generator and detector are separated by 4.5 cm, it is necessary to take the expansion 
out to the seventh order. 

F^ (GMmd/R*) {[6A cosß+SSA* cosV+H^A6 cos^+H^A7 cos'ö] sin» 

+[6A sinÖ+SSA» sinV+^A6 sin'ö+AV^A7 sin7ö] cos»|.    (A13) 

(The even order terms drop out because of the symmetry.) If we rearrange the above equation and use the trigo- 
nometric identities 

2sinöcosö=sin29, 

2 (cos*e sinö+sin1» cosö) = sm20, 

lötcosV sinö+sin6« cosß) =5 sin2ö+sin6ö, 

32(cos7» sinfi+sin7» cosö) = 7 sin2fl+3 sinW, (A14) 
we can obtain the expression 

FB= {(ßMmW/R*) 1 (l+MA'+WA'+H^A«) sin2iH+(f|iA4-fWA«) sin6n/|, (A15) 
1C. C. Bell, J. R. Morris, J. M. Richardson, and R. L. Forward, "Vibrational Mode Behavior of Rotating Gravitational Gradient 

Sensors" (to be published). 
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Flo. 8. Calculated equivalent gravitational-force gradient. 

where we brought out a factor of 6A = 6ld/R2 from 
behind the brackets. This expression shows that the 
interaction force between the generator and detector 
is complicated at close distances of separation and 
depends upon the sizes of the generator and detector, 
as well as the separation distance. This expression 
also shows that in addition to responding to the gravi- 
tational-force gradient or the second-order gradient of 
the potential at 2i2, the detector will also respond to 
the sixth-order gradient of the potential at 612. Because 
of the symmetry of the generator-detector combination, 
the intermediate higher-order gradients are not ob- 
servable. 

In order to relate the equation for the effective force 
on the gravitational-gradient sensing mode of the de- 
tector [Eq. (A1S)] to the previous work, we define 
an equivalent gravitational-force gradient by the re- 
lation 

T=Fa/2ml, (A16) 

where m is the effective mass and 21 is the effective 
length of the gravitational-gradient sensing mode. 

The effective gravitational-force gradient [Eq. 
(A16)] was computer calculated for various values of 
the separation distance k, and the results for the ampli- 
tudes of the two frequency components are plotted in 

Fig. 8. For this curve it was assumed that the detector 
had an effective radius of 5 cm, and the generator 
consisted of two 1-kg masses on a radius of 4 cm. At 
the nominal separation distance of 5 cm, the effective 
gravitational-force gradient resulting from the generator 
is 1.24X10-7 sec-2. This is about 0.04 of the earth's 
gradient. These two relatively small masses have a 
relatively large gradient because we are able to bring 
the center of mass of the detector very close to the 
center of mass of the generator. 

At distances greater than 12 cm, the only important 
term in Eq. (A16) is the first, and the effective gravi- 
tational gradient is given by the formula 

T=XMiPsmlüt/iW+dt+P) ^ä! {SCMtf/h*) sm2Üt. 

(A17) 

The gradient is falling off as (P/h* rather than as l/A' 
because the detector is only sensitive to the dynamic 
gradient being generated by the rotating mass-quad- 
rupole moment of the generator and is not sensitive to 
the static gradient of its monopole moment which does 
fall off as l/A5. 

If we choose the rotation speed Q of the generator 
so that the detector senses the gravitational-force gra- 
dient fields being generated at twice the rotation speed 

k/m= (2n)2, (A18) 

then the gravitational forces at 20 are seen to be driving 
terms in the equation of motion A the vibrational mode 
[Eq. (A8)]: 

'Ag+ (d/m) A,+ (2a)8A,=217 sin2n<.   (A19) 

The solution to this equation is well known as 

A<,= -2r/[e/(2n)!!]cos2n/) (A20) 

where A, is the amplitude of the vibrational mode and 
Q= 2Qm/d is the quality factor of the resonance. 

In practice we do not measure the mode amplitude 
directly, but instead measure the amplitude of one of 
the arms 

Ai-iAg« -r/[Ö/(2fi)!!] cos2iM.        (A21) 
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APPENDIX   G 

DISCUSSION AND ANALYSIS OF THE VERTICALLY TUNNELED 
SPHERE-NEWTONIAN GRAVITATIONAL CONSTANT EXPERIMENT 

(Prepared by D. Berman) 



SUMMARY 

This scientific report covers one portion of a program to find 
a new experimental method of improving our knowledge of the Newtonian 
gravitational constant (G).    According to the NBS Technical News Bulletin 
(October 1963) the presently accepted value is 6.670 ±0.015 x 10" 
m   kg"    sec"^ (three standard deviations).    The vertically tunneled 
sphere experiment is based on a suggestion of Professor J. W.  M.  DuMond 
of the California Institute cf Technology.    The experiment utilizes the 
fact that a mass moving freely through a tunnel bored in a sphere will 
oscillate about the midpoint of the tunnel at a period determined by the 
density of the sphere.    To counteract the large forces of the earth in the 
vertical position,   it is necessary to bore two tunnels and measure the 
net response of two masses suspended from the level arm of a balance. 
A measurement of the change in the period of the balance when the sphere 
is put in place will then be proportional to the density of the sphere.    The 
accuracy of the experiment will be limited by precision in the manufacturing 
of the balance,   sphere,   and tunnels,   as well as the ability to detect extremely 
small changes in period.    The analysis indicates that presently attainable 
accuracies in the manufacture of the experimental apparatus will introduce 
measurement errors of appreciable magnitude.    It does not appear that this 
experiment,   in the analyzed configuration,   can significantly improve our 
knowledge of the Newtonian gravitational constant. 



I.       INTRODUCTION 

The gravitational constant   G   currently is known to one part 
in 500 (three standard deviations).    The most accurate of the various 
experiments to determine   G   to date is the "time of swing" method 
of Heyl. *■   This experiment consists of two concentric torsion balances 
and is similar to the Cavendish apparatus (seeFig. G-l).  One balance 
is held stationary while the other is excited into a pendulum torsional 
mode oscillation.    When the two balances are aligned in parallel,   the 
period of swing is less than when they are aligned at right angles.    In 
the former position,   the gravitational attraction between the two balances 
adds to the torsional spring restoring force; in the latter position,   it 
subtracts from it.    The gravitational constant is obtained from measure- 
ment of the difference in periods between the near and far positions. 
The periods were on the order of a half hour,   and could be measured to 
0. 1  sec. 

A method of determining   G   to higher accuracy currently is being 
tested at the University of Virginia. 2   (SeeAppendix E of this report)   This 
experiment is designed to improve the knowledge of   G   to one part in 10   ; 
with future versions,   accuracies greater than one part in 105 and possibly 
one part in 10° should be attainable.    It also consists of two concentric 
torsional balances.    One balance is free to rotate under the attraction of 
the second,   while the second is motor-driven and servo-controlled to 
maintain constant angular position with respect to the first.    Hence,  both 
balances will rotate through 360°,  while a constant torque is being main- 
tained on the free balance.    The angular displacement,   after many hours, 
determines the gravitational constant. 

In trying to push the gravitational constant to higher accuracy, 
we ultimately approach the limitation of precision in the determination 
of mass separation distances and homogeneity of density within the 
masses themselves. 

Professor DuMond has suggested that a new "time of swing" 
experiment can be performed.    A vertical torsion balance (Fig. G-2)may 
be constructed such that the suspended masses move freely through 
each of two tunnels bored in a sphere.    The period of oscillation for an 
ideal system is on the order of one hour.    He has also suggested that 
the sphere can be hollow and filled with liquids of various densities. 
The primary advantage of the tunneled sphere experiment is that to first 
order we do not need to know the position of the tunnels in the sphere or 
the positions of the suspended masses in the tunnels.    It also has the 
advantage that the gravitational force measurement has been converted 
directly into a frequency measurement,   and these can be made with 
high accuracy. 
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Fig. G-l.     Cavendish type coaxial torsion 
balance system. 
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A. 

II. SYSTEM DESCRIPTION 

An operational system could be as shown schematically in Fig.G-.2, 
The main component is a large solid sphere,  precision machined to within 
tolerances of eccentricity as defined in Section IV.    Two parallel tunnels 
are drilled in the sphere.    A vertical balance is constructed such that two 
identical masses are suspended into the tunnels from the ends of fine wires. 
The balance is initially adjusted to an equilibrium position,   such that the 
masses rest at the line passing through the center of the sphere and parallel 
to the horizontal bar of the balance. 

Attached to the center of the balance is a small mirror,  which 
deflects a steady light beam onto a detector.    The angular motion of the 
balance is observed in this way.    The timing of the period of the balance 
can be accomplished by standard period measurement techniques using 
precise electronic counters. 

The balance system must be operated in a vacuum in order to 
decrease the damping and eliminate connection disturbances.    It is also 
advantageous to shield the system magnetically,  as this has been found 
necessary in previous gravitational experiments even when the apparatus 
was made of nonferromagnetic material. 

Initially,  the balance is adjusted to an equilibrium position in order 
to cancel out the constant torque due to mechanical imperfections.    Then 
the oscillations are induced by manipulating the balance.    The induced 
motion is continued in resonance until the desired amplitude of deflection 
is attained. 
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1 III.      GRAVITATIONAL INTERACTION: 
IDEAL BALANCE 

The gravitational potential at a point is given by the Poisson 
equation: 

V2rf   = - 4Tr Gp (1) 

where 

^       =       the gravitational potential 

P       =       local density 

-8 G      =       gravitational constant = 6.67 x 10'  (cgs) (2) 

In spherical coordinates and for spherical symmetry,   equation (1) 
becomes {d = & (r)) 

+   p  f)   = - 4. OP^ (3, 

To find the attractive force (per unit mass) inside a uniform sphere of 
constant density,   integrate both sides 

Fr   =  ll?   = "   I   ^ pr (4) 

The force is in the radial direction, toward the center of the sphere, and 
proportional to the distance from it. 

Consider next a tunnel through the sphere,  not necessarily passing 
through its center (Fig. G4.3)l  Thecomponentofforce parallel to the tunnel 
is easily seen to be proportional to   x,    the displacement from the center 
of the tunnel.    The tunnel itself will have no gravitational effect in the 
direction parallel to it. 
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Fig. G-3.   Components of gravitational attraction inside the tunnel 
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The differential equation for the motion of a test mass   m 
along the tunnel (undamped) is readily written 

mx   +  4   TrGpmx   =   0 (5) 3 

such that its natural period is given by 

«o=|   ^GP (6) 

and the period by: 

T   =  ilL   =   (3Tr/GP)1/2 . (7) 
o 

Thus,  the gravitational constant   G  is available by measurement of the 
period of oscillation   T   and knowledge of the density   p.    Solving (7) 

G   =   STT/PT2 . (8) 

Hence,  we must know   p   and   T   with the precision that we hope to 
determine   G. 

To estimate the order of magnitude of the periods involved in this 
experiment,   substitute into (8)   G   =   6.67 x 10"° (cgs); and   p   =   13.5 
(the density of Hg).    The result is,    T   =   3000 sec,  or 50 min. 

So far in the analysis,  we have not considered the gravitational 
attraction of the earth in the calculation of the motion of the test mass. 
The second tunnel shown inFig.-G-jZ, withthebälancearrangement of the 
second mass,   cancels out the large gravitational acceleration due to the 
earth for an ideal balance.    However,  the gradient due to the earth will 
affect the period. 

With respect to. Fig..G-,4, lötx.    and   x-,   be the vertical distance 
of the two masses from the center of the sphere.    Consider the earth as 
spherical,  with center at distance   R.    The vertical force on mass one. 
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due to both the surrounding sphere   (F )   and the earth   (F ), is given 
by:   F,    =   F     +   F s e 1        1 s e 

1 

F,    =   mG 
4     „        ,    M (9) 

(R + Xj)' 

where   M   = mass of earth. 

For the spherical earth,  we may write 

4        3 
i e (10) 

whe re   P    = density of the earth.    Because   x, ^ R,  ,    F    becomes e lie 

F     -   m -I   irGp    (R - Zx,) e 3 e x 1' (11) 

Using this result,   equation (9) becomes 

F1   =   m -J  TTG   jpXj + Pe (R - Zxj)! (12) 

Similarly, the forces on mass two are 

F,   =   m  -Y   TTG   ! Px,+ p 3 :     2       e 2 ' 
(R - 2x7)l     . (13) 

The total torque acting on the over-all balance system is 

T   = a(F2 - Fj) (14) 
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Fig. G-4.     System schematic showing 
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where   a   = lever arm.    Substituting (12) and (13) into (14) yields 

T   =   ma  -j   TTG (2p    - p) (x.  - x,) (15) 

The differential vertical displacement   (x.  - x?)   is related to the balance 
angular deflection   6   by (Fig. 4) 

(x.  - Xy)   =   2a sin 6 (16) 

Using (16),   equation (15) becomes 

T   =  |  Trma2G (2Pe - p) 6 = - kO (17) 

for small   6. 

The differential equation for angular motion of the balance is 
written 

IG   + kS   =   0 (18) 

where   I = moment of inertia = 2ma  .    Thus,  the natural frequency of the 
system is 

k/I   =  |   TTG (P - 2Pe) (19) 

with the corresponding natural period 

T    = 
Sir 

G(P - 2Pe) 

1/2 
(20) 

Comparison with (7) shows that the effect of the earth is to replace the 
sphere density by a combination of sphere density and earth density.* 

If we had not assumed a spherical earth,    pe   would be replaced by the 
earth's vertical gradient at the surface. 
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Thus,  the earth's density must be known to the same accuracy with 
which we want to determine   G   (from equation (20)). 

A solution to this problem would be to conduct two identical 
experiments at the identical point on the earth's surface,  but using 
spheres of different densities.    Then the density of the earth may be 
found from solving (20) simultaneously,  yielding 

Pe   =   2 

r 2 2 
Vl  -T2P2 

(21) 

where   Tj      and   T^   are the measured periods using two spheres of 
different densities   p,    and   p? . 

Then   G  would be solved from (20) 

G   = 
3^ (T* - T*) 

2T2 ,„ 
T1T2^ Pl) 

(22) 

From equation (20) if   2pe = p ,  the period is infinite; i.e.,   there 
is no oscillation.    Moreover,  if 

P <2p. (23) 

the system is unstable. However, these results are for a perfect balance. 
In the following section, we will show that an imperfect balance gives rise 
to a period much less than that indicated by (20), and G must be found by 
an extremely sensitive frequency measurement. 
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IV.       SOURCES OF ERROR 

In Section III,  we derived the equation of motion of the balance 
assuming perfect manufacturing of all system components.    In this 
section,  we shall re-derive these equations,   accounting for a nonspherical 
sphere (spheroid) and an imperfect balance.    It will be shown that the 
required tolerances are quite severe,   and that this experiment will 
therefore be difficult to perform. 

We   now consider the imperfect balance.    As shown inFig_. • G-5, the 
lever arm is not straight,  but warped by an angle   ß .    This effect causes 
the balance to restore to an equilibrium position,   thus interfering with 
the gravitational attraction due to the sphere.    The period of oscillation 
even for a highly balanced system,  will be much less than that predicted 
by (7).    Writing the forces in the two masses (Fig. GJ-B), 

=   Gm [sin(e+ P) - sinp] /^M .|   „, a cos (6 + p) (24) 

^   =   Gm   5rsin(e + p) - sinp]/--^-+ I V. a   +-^f- a cos (6 - p) •        (25) 

The torque is obtained from 

T   =   a cos (9 + p) Fj - a cos (6 - P) F2 . (26) 

Substituting (24) and (25) into (26) for   small   0   and   p 

T   =   2G ma' 
2M       4     \    +   m 

R 
3        3 

aR 
6   . (27) 

The natural frequency (from 19), using M = (4/3) TTR   p    ,  is 

«2   =   |TrG(2pe - p) + pg/a (28) 

where   g =  980 cm/sec  . 
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We recognize the first term as the natural frequency (squared) 
of the ideal balance (see eq.  (19)).    The second term is dependent on 
the imperfection of the balance lever arm,   and is present even in the 
absence of the sphere.    Rewriting (28) 

"2   =   «o   +   "ß (29) 

where wfl   =   ßg/a .    The period is 

Tß   = ^1/2   =   2lTa/(g^1/2 (30) P        (ßg/a)1/Z 

where   A = aß,  the alignment of the suspension points at the end of the 
lever arm (pee Fig„G-^).). To increase the period to 3000 sec to be compar- 
able to the ideal period,   requires making adjustments to 10" ' cm.    On the 
other hand,  if we allow a larger value of   A,  for example   A= 10"4 cm, 
then   To   = 200 sec.    This is 15 times less than the natural period of the 
ideal system,   and,  in order to obtain an accuracy of 10"    in the me asure- 
ment of   G,    must be measurable to one part in (10 ) (15)    «2 x 10°.    In 
other words,  there is a trade-off between either a very critical adjustment 
capability,   or a very sensitive frequency determination.    Precision 
timing references up to one part in 10^ are available and previous 
experiments have obtained such measurements approaching one part in 10  . 
The question is whether these techniques could be refined to measure 
frequency to the required precision. 

We next consider the effect of a nonperfect sphere (spheroid). 
Inside a nearly spherical ellipsoid,the attractive force in the vertical 
direction is-5 

F   = I TTGP   fl  - I  b ' k j    x   «|   TTGP (1 + e) x (31) 

wher«   k = average sphere radius,   b =   vertical major axis,   and   e = fractional 
deviation of radius from mean.    Comparison of eq. (31) with (4) and (8) shows 
that the error in determination of   G   is directly proportional to the tolerance 
with which the sphere is manufactured.    To obtain an accuracy of 10"   ,  for 
example,   requires that the circumferential variation in sphere radius from 
the mean be no greater than 0.0001%.    A ten inch sphere requires a machin- 
ing accuracy of ten millionths.    This level of manufacturing precision is very 
difficult to attain,   especially in the large spheres required for this experi- 
ment. 

We conclude that this experiment would be difficult to carry out in 
the form considered herein,primarily because of the difficulty in fabricating 
the experimental apparatus to the required tolerances. 
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Fig.  G-6.    Schematic of balance with adjustable-mass position. 
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LIST OF SYMBOLS 

Unit vector in the direction of the vector   f 

Unit vector in the direction of the vector   F 

Unit vector in the direction of azimuth   A 
t> 

Unit vector in the direction of   A   +   p- 

Unit vector in the direction of the vector   g 

Unit vector in the direction of the azimuth   i\) 

Flight azimuth angle 

The expected value operator 

Time derivative of   X   in the inertial coordinate system 

The gradient field vector 

The intensity (magnitude) of   f 

The inertial field vector 

The gravity vector 

Intensity of gravity 

a resolvable component of a gravity intensity measurement 

g r   Z gi 
i=l 

Gravity anomaly at point   q 

The gravitation vector 

The universal gravitation constant 

Length of arc traveled in time   T 

Effective mass of the earth 
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N 

N 
I 

P 

Q 

R 

U 
—*■ rP V   = Ht u   - JE 

r   —*^ 
•\T dR 
^P- dt 

L         jp 

r  + r 
r*   - p          V 

1 

Ar 

g 

p 

Height anomaly of the geop with respect to the 
spherop or the geoid with respect to the international 
spheroid 

N   at point   p 

The fixed field vector 

The point of measurement 

Radius vector of the geopotential in azimuth   A 

Position vector to the geocerter 

The gravity potential 

Geodetic velocity 

Platform velocity 

Average vertical gradient of   g 

Vertical gradient of   g   in the plane of azimuth   A 

The average vertical gradient of   g. 

Bias error in the gradiometer 

Vertical gradient of   g   in the major principal section 
the geop 

Vertical gradient of   g   in the minor principal section 
of the geop 

Astronomical east deflection of vertical 

Gravimetric east deflection of vertical 

Radius of curvature of minor geop section 

Astronomical north deflection of vertical 

Gravimetric north deflection of vertical 

Radius of curvature of major geop section 

Standard deviation of the gradiometer errors 
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Averaging or integration time of the instrument 

Deflection of vertical in the direction of   A   + R 

U)  =   OJ PE 

Azimuth of the major geop section 

Precession of the platform with respect to the 
earth 

il  = Ü El 
Precession of the earth with respect to inertial 
space 
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INTRODUCTION 

A gradiometer is a differential accelerometer which measures 
differences in the specific force vectors at two different points in 
space.    The inertial field vectors at these points can be decomposed 
into three othogonal components   —   one along the line connecting the 
two points and two in the plane normal to it.    The class of instruments 
of interest here senses the gradient of the field in one direction in the 
orthogonal plane.    Two crossed mass quadrupoles connected together 
at their centers by a flexural pivot form such an instrument.    The 
orthogonal gradient in the plane of the sensor causes a torque in each 
quadrupole.    The difference in torques between the two quadrupoles 
flexes the pivot; the strain in the pivi,t is thus related to the gradients 
of the inertial field at the plane of the sensor. 

Static gradiometers are sensitive to the stabilities of all the 
instrumental components which carry the signal during a measure- 
ment.    The problems are no different from those encountered in the 
design of accelerometers or gravitometers.   At present,  the state of 
the art in these devices falls short of the accuracy requirements for 
useful gradient measurements .    Fortunately,  gradiometers naturally 
overcome this limitation. 

The magnitudes of the gradients of the field vary with direction. 
These variations are in the nature of angle function modulation of the 
field constant.    A periodic change in the orientation of the dipoles in 
the plane of the quadrupole causes the space angle function to time 
modulate the sensed gradients.    The time variable component of the 
measurement is proportional to the field constant.    An estimate of the 
field can thus be derived from the periodic component of the measure- 
ment.    This estimate is affected only by instrumental drifts which occur 
during the scan period.    These drifts are negligible,  permitting accur- 
acies and threshold sensitivities which approach the theoretical per- 
formance limit.    Thus,   dynamic gradiometers,  by angle scanning the 
field at the point of measurement,   can achieve sensitivities which are 
beyond the state of the art of static specific force sensors. 

Dynamic gradiometers can employ a number of types of angle 
scans.    The type which has received the most attention to date is rota- 
tion at a constant rate.    The rotating gradiometer has been under 
development at Hughes Research Laboratories for a number of years. 
Its development up to April 1966 is summarized in Ref.   1,  and current 
concepts and plans are described in Ref.  2 and the final report of the 
subject contract,  of which this report is a part. 
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Investigations to establish the potential of the rotating gradiom- 
eter in aerial geodesy have led to the conclusion that it can be used to 
level a moving platform.    In turn,  this has led to the discovery of a 
new gradient sensing mode which is possible in a modified form of the 
quadrupole sensor.    This gradient level mode resonates at the driving 
frequency,   while the vertical gradient mode resonates at twice the 
driving frequency. 

The gradient level mode is the key to the concept of the nutating 
gradient J.evel.    This level and the analysis leading to its invention 
are described in Ref.  3.    In addition to measuring level,  the nutating 
gradiometer is capable of measuring simultaneously the vertical gradient 
in two orthogonal planes.    These planes are aligned with the principal 
sections of the geopotential by sensing the variations of the vertical 
gradients with azimuth.    Thus,   a single device can sense the level direc- 
tion of the geopotential surface as well as the azimuths and the vertical 
gradient of its principal sections. 

This report is an outgrowth of two research studies in the field 
of aerial geodesy.    One is concerned with aerial gravity measurements, 
and the other with establishing the geodetic altitude of an airborne 
camera.    The nutating gradiometer,  or an aggregate of other gradiom- 
eters having the same capabilities, promised to have applications in both 
problems.    At first the two problems appeared totally different,  belong- 
ing to two separate disciplines of geodesy.    As the latent capabilities of 
the gradiometer became evident,  they were applied differently to the two 
problems.    Later it proved that the solutions to one problem enhanced 
the solutions to the other.    Thus,  the simultaneous considerations of 
both proved profitable. 

The aim of this presentation is to explain the aerial capabilities 
of gradiometers.    Gradiometers sense the parameters of the gravity 
field.    Their measurements, therefore,   result in information about 
the field which can be used to map it.    Every gradiometer application 
is in effect a mapping process.    Here this process is described from 
the point of view of physical geodesy.    The primary objective is the 
improvenaent in accuracy and resolution of aerial measurements of 
gravity,   as well as their reduction to the map of the geoid. 

The direct application of gradient measurements to aerial mea- 
surements of gravity was analyzed under the subject contract.    The 
analyses of the capabilities of the gradiometers, their application to 
aerial sectioning of the geopotentials,   and the manner by which section- 
ing can improve the map of the geoid were the result of a separate 
investigation.    This investigation,  "Altitude Deviation Study," is per- 
formed under contract with the Research Institute for Geodetic Sciences, 
USA/ETL (U.S. Army Engineer Topographic Laboratories),   Contract 
No.  DAAK-02-67-C-0262. 

i 
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II. LEVELING OF A MOVING PLATFORM 

The inertial field of a point of measurement is described by 
its equation of motion in inertial space.    The equation of motion of 
a point   Q   in the vicinity of the earth is derived in Ref.   4,  paragraph 
2.4,   and,   in a simplified forra in Ref.   5.    The expression for the 
inertial field vector depends on the coordinate systems in which the 
variables are expressed.    Transformations of variables between the 
coordinate systems are described by the Coriolis theorem.    Let   Q 
be a point of measurement fixed on a platform which is translating 
and rotating with respect to the earth.    The inertial field at   Q   may 
be expressed in the platform coordinate system by 

+   2^ x Vp + Zw x Vp 

specific      =   acceleration   +      Coriolis effect 
force 

-   G + fTxlI x R (1) 

gravitation   +   centrifugal force 

+ gravity 

+ 2ß xwxR+wxtoxR 

+ Ebtvos effect 

[f]  * R 

-x' 

+ angular acceleration 

where 
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VP 
— dt 

iT = ^EI 

R = ?P 

w 

F—        =    total specific force at   Q 

=     platform velocity of   Q   with respect to the 
P geocenter 

-     earth rotation with respect to inertial space 

=     position vector of   Q   from the geocenter 

co——      =     rotation of the platform with respect to the 
earth 

G = G0        =     gravitation at   Q 

g 

[£ 
cT-. - S2 x $2 x R      =      gravity at point   Q 

=     time derivative in the platform coordinate system. 

The injytial field vector consists of two major components, the constant 
field p and the gradient field FT p* is independent of IT, while I* is a 
function of   R.    Thus, 

F = r + f (2) 

where 

P  =  [-dt J      + 2" x Vp + 2u) x Vp Vp (3) 

and 

[ft- f = G + (fi  + u) x (n   + CJ) x R + |^       x R + (n x u) x R    .       (4) 

Let   a     be a unit vector in the direction of   g.    a      is then the direction 
of the vertical which is the perpendicular to the geopotential at   Q. 
Leveling involves aligning in the direction of the vertical. 
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^ Wh^n the platformjs stationary_^ith respect to the earth, ^hen^. 
V    = 0,  [dVp/dt] p = 0,    öT = 0,    and   [du/dt]p = 0.    As a result,    F = T= 
g,    and the inertial force field is equal to the gradient field,   which in 
turn is equal to the gravity field.   The direction of the gravity vertical 
or the direction of   g   can then be determined either with an inertial 
level,   which measures the direction of   F,    or a gradient level,    which 
measures the direction of   f. 

A two-axis force sensor (such as a bubble level) constitutes an 
inertial level.    In the conventional bubble level the bubble is under a 
curved surface,  and it is centered only when its base plane is per- 
pendicular to the inertial force   F.    Uncertainties in measuring the 
bubble position limits it to sensitivities of 10"     rad.    In the limiting 
case,  as the radius of curvature goes to infinity and the surface of the 
bubble becomes an optical flat, the bubble is stationary only when the 
optical flat is perpendicular to the inertial field,  and the slightest tilt 
accelerates the bubble.    Measurement of the motion of the bubble rather 
than its position has led to inertial bubble levels with sensitivities 
better than 10"9 rad (Ref.  6). 

The bubble level loses its effectiveness on a moving platform. 
The instantaneous inertial field vector now deviates widely from the 
gravity field vector as a result of platform accelerations.    This 
causes severe dynamic tracking problems,   which result in lag errors 
and possibly,  in extreme cases,   in bubble breakdown.  So long as the 
bubble can be kept intact and the lag errors within bound,   it is possible 
to measure the long term average direction of the inertial field.    This 
is facilitated in situations where    (dVp/dt)p = 0.    In that case. 

(F) = (2« x V  ) + (2co x Vp) (g) + (2n x w x R) + (u x w x R)   ;   (5) 

When the motional terms are known,    (a„)   can be derived from   (ap). 
Pure inertial leveling of a moving platform is difficult to implement; 
in addition,   it requires a very long average distance,   which limits 
its accuracy. 

An alternative approach to inertial leveling by long term 
averaging is possible when independent estimates of   Vp   are 
available.    To eliminate the breakup problem,   the bubble is replaced 
with two crossed accelerometers.    The level direction is computed 
from (1) using the measured values of   iTpft)   and   V"p(t).    This 
technique,   Doppler-inertial leveling,  is discussed further in Ref.  7. 
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The gradient level is not sensitive to frame accelerations.    The 
direction of the orthogonal gradient field vector therefore does not vary 
significantly from the vertical.    The required averaging time is the 
same as in stationary operation.    As a result,  the gradient level is 
just as effective on a moving platform as in stationary measurements. 

Rewriting (4) yields 

g = 2J2xcüxR+uxwxR   +     -rr 1 at 
x R - f   ; (6) 

JP 

a    jean be shown to be equal to   af 
or  f    is measured. 

when only the orthogonal component 

When the frame of measurements is in orbit,    F = 0.    As a 
result,  it is impossible to measure   a     by inertial leveling.    The 
gradient field,  on the other hand,   remains unmodified.    Equation (6) 
still applies,  and the gradient level will work.    This extends the utility 
of the device to orbital operations. 

This new independent capability for accurately leveling a moving 
platform on earth or in space is important to navigation and geodesy. 
The navigation applications of the gradient level are discussed in Ref. 7, 
This report explores its application to geodesy with emphasis on aerial 
physical geodesy. 

III. MEASURING THE CURVATURE OF THE GEOPOTENTIALS 

The geoid (mean sea level) and the geopotentials above it are 
solid surfaces which undulate about an ellipsoid of revolution.     Assume 
that any small region of the geopotential can be approximated by an 
ellipsoid of revolution.    In that case the geopotential at any point can 
be defined by its two principal radii of curvature    p   and   v    and by the 
azimuth   ip   of the section whose radius is   p   (Ref.  9,  p.  8.03).    The 
azimuth of the section whose radius is   v   is    ^   +    (T/Z).    The cur- 
vature of the section whose azimuth is   A   is given by Euler's theorem": 

2 2 
l_   _   cos    (4<  - A)     .    sin    (4>  - A) 
r   ~ p ' v (7) 

This section describes two techniques for measuring   r.    One 
makes use of a level sensor on a moving platform.    The other requires 
the measurements of gravity intensity and the vertical gradient of 
gravity.    This technique is also applicable to stationary measurements. 
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LeX, a measurement platforni travel along a level surface with 
velocity   V       [dR/dtJc-   in the direction of azimuth   A.    Let a level 
sensor such as the gradient level operate on the measurement plat- 
form.    The angular rotation of the level wita respect to the earth is 
given by 

CO @ +r^)E + v(t) (8) 

I 

where   c.!
v,    at,   a      form a right handed coordinate system;   a^.   is in 

the level plane with azimuth   (A + (R/2));   'S     is in the level plane with 
azimuth   A; and   ae   is always in the direction of the vertical;   r   is the 
instantaneous radius of curvature of the geopotential section along the 
line of flight.    X = - £ sin A + T| cos A - the deflection of vertical in the 
direction of   A + (R/Z). 

V   canjae^ measured independently by Doppler radar oraccel- 
erometers.   w,a     •   {dx/dt)£ and   a^dA/dt)„   can be measured by 
reference to an inertial platform.    Substituting the measured values 
in (8) results in an estimate of   r   along the line of flight. 

The measurement of   r   in any section,   including the line of 
flight,   is also possible with a vertical gradiometer.    The two- 
dimensional gravity model in any section is circular.    That is, 

u = r 

g = 
kM 

2 
r 

A 
= 0^         2kM 

ar   "         3 (9) 

where 

U    -      gravity potential number 

k     =      universal gravitational constant 

M   =       effective mass of the earth along 
the section 

rA   S vertical gradient of gravity in the 
direction of azimuth   A . 
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g   Is measured with a gavitometer,  and    F^   is measured with 
a vertical gradiometer whose plane coincides with   A.    On a moving 
platform the gradiometer measures the gradient in the direction of   A 
along the line of flight.    The corresponding average radius of curvature 
is computed from 

Is. (10) 

For the purposes of vertical continuation the vertical gradient is 
taken as the average of the gradients in the directions of the principal 
sections (Ref.   9,   pp.  7.26): 

r = - g H (U) 

This model also applies to the decomposition of a single measure- 
ment of   g   into its component values (see Section V). 

IV, CURVATURE AIDED LEVELING 

The nutating gradiometer of Ref.  3 can perform the functions of 
a number of single plane gradiometers.    It is in fact capable of simul- 
taneously measuring    F ,   rv ,    a     and   a^.    The last section of Ref.  3 
pointed out that the radius of curvature along the line of flight can be 
estimated either from   1^   or from the angular rate of   iT    along the 
line of flight.    The estimate of   r   is more sensitive to pointing errors 
than to proportional errors in   F^   (Ref.   10).    At the same time,  the 
threshold sensitivities for both modes of operation in the nutating 
gradiometer are the same.     These two conditions can be used to 
enhance the resolution of the gradient level while retaining its 
accuracy. 

The threshold sensitivity of a gradiometer is a function of 
its quadrupole constants (mass of the pole and length of the quadrupole 
arm), and the integration time.    In the nutating gradiometer the quadru- 
pole constants are the same in both modes.    When the integration time 
is the same in both modes,  the estimate of curvature from the vertical 
gradient is more accurate than its estimate from the level rate. 
When the integration time of the vertical mode is reduced, to give 
curvature estimates which are equal in accuracy to the estimates from 
the level rate,  the resolution of the measurements increases.    The 
increase in resolution is by   (^S/TT) (r/fc)   where I     is the length of 
arc traveled during the integration time of the level mode.^   This 
accommodates higher frequency undulations in the geopotential with- 
out aliasing errors. 
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The techniques of physical geodesy were originally developed for 
gravity measurements taken on the earth surface.    High cost and compli- 
cated logistics preclude the attainment of adequate coverage of the globe 
with surface measurements in the near future.        Aerial measurements 
of gravity offer an alternative to surface measurements.    They have the 
advantage of speed,   mobility,  and access to remote areas,   and thus 
overcome many of the problems of surface measurements. 

The most advanced system for airborne measurement of gravity 
is now under evaluation by the gravity branch of the AFCRL Terres- 
trial Sciences Laboratories.    This system is described in some detail 
in Ref.   12.    Figure 1 describes the operational profile of the system. 

The aircraft attempts to fly a constant heading course on a 
single geopotential.    The actual flight altitude differs from the desired 
course because of the characteristics of the autopilot.    This needs to 
be compensated for in the data reduction.    The system employs 
barometric means for sensing the altitude deviations from the geopo- 
tential.    The isobaric section does not coincide with the geopotential 
section.    An estimate of its deviation from the geop is computed during 
data reduction.    The three major error sources in this process are 
the compensated height uncertainty,  the uncertainty in the estimate of 
the isobaric height deviations from the geop,   and the representation 
error which results from aliasing the high frequency unmodulations of 
the geop. 

The airborne gravitometer is a special purpose single axis 
integrating accelerometer,   designed for stability and accuracy over 
a limited range of   g   values.    It measures the average component of 
the inertial field   (F)    in the direction in which it is pointing.     The 
inertial field at a point occupied by the gravitometer is given by (1). 
The average measurement is given by (5).    Equation (5) can be fur- 
ther simplified by taking note that   E_£.(Vp)]  —0.    The gravitometer 
is always pointed in the direction of   ao    oy the navigation system. 
Estimates of   (IT)   and   (uT)   =   (V x a^/R)   are also derived from the 
navigation system.    This procedure is similar in nature to the pure 
inertial leveling of a moving platform discussed in Section II.    Errors 
in this measurement are introduced by the following sources:    gravi- 
tometer errors, residual vertical acceleration due to   {dVT/dt)    i 0, 
level errors due to   an / a„,    and navigation errors as reflected in 
the E'dtvbs correction 

R g 

To map the geoid,  the measured values of the external gravity 
field must be continued downward to sea level.    The techniques for 
vertical continuation involve spatial correlation of measurements.  -^ 
They all depend on the estimate of the geopotential height and a standard 
model of the external field.    This provides two other sources of error 
in the final result.    The first is the uncertainty in height,   and the second 
results from local variations of the field. 
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When leveling a moving platform,  the instrument senses the 
f average error from true level.    The true level direction changes as 

the instrument moves in space during the averaging time.     When the 
integrating time is short compared with the time behavior of the scanned 
undulations of the geopotential,   the curvature of the geopotential can 

. be predicted from the level rate.    This predicted curvature is then used 
to precess the level during the averaging time.    This compensates for 
the motion of the level. 

The curvature estimates from the vertical gradient mode can 
also be used to precess the level during its averaging time.    The re- 
quired integrating time of the curvature estimates is smaller than the 
level integrating time.    This permits the removal of effects of high fre- 
quency undulations which cannot be directly tracked by the level mode. 
The resulting estimate of the level error is free from aliasing errors. 
The level at all times actually points in the proper direction as deter- 
mined by instantaneous curvature.    The process is in effect equivalent 
to increasing the frequency response of a low pass filter by the addition 
of a parallel band-pass filter. 

Curvature aided leveling along the line of flight improves the 
resolution in one dimension of a two-dimensional situation.    Unfor- 
tunately,   the "twist rate" or precession normal to the line of flight 
cannot be estimated from the curvature.    Therefore,  it is not possible 
to improve the spatial resolution in that direction without a priori mapping. 
Fortunately,   in most applications level accuracy along the line of flight 
is more important than level accuracy in the transverse direction. 

V. AERIAL MEASUREMENTS OF GRAVITY 

Two important problems in geodesy are the mapping of the 
external gravity field and the determination of the shape of the 
geoid.    The two problems are interrelated because one can be esti- 
mated from the other by vertical continuation. 

Physical geodesy provides one of the more promising approaches 
to this mapping problem.   ' '   In this method the geometrical param- 
eters of the geoid at any point are determined by the correlation of 
gravity intensity measurements taken all over the globe.     The measured 
values are reduced to mean sea level and the gravity anomalies   Ag's, 
the differences between the reduced values and those computed from the 
standard gravity formula,  are derived.    The height anomaly   N   at any 
point is computed by means of the Stoke1 s formula.    The gravimetric 
deflections of vertical at that point   £      and   r\     are computed by means 
of the Vening Meinesz formula (ibid). 
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Conceptually,  gradiometers can directly improve the accuracy 
of aerial gravity measurements in three ways: 

1. Eliminate leveling errors. 

2. Improve the local model of the external fl/jld 
by vertical gradient measurements.    This 
should improve the accuracy of downward 
continuation to the geoid and the height com- 
pensation of the gravitometer. 

3. Reduce representation errors by estimating 
the true radii of curvature of the geopotential 
from vertical gradient measurements.    Vertical 
gradient measurements can be done faster than 
gravity measurements.  When done to a commen- 
surate precision they permit the resolution of 
the average gravitometer measurement to its 
components. 

The procedure for reducing the representation error by vertical 
gradient measurements is based on the following two relationships: 

g; 
I   \jr~ 

(12) 

and 

U (13) 

i5> 
i=l 

1/2 

Here   g   is the measured average value of gravity intensity, 

r   +r p.        v. 

.th is the average vertical gradient of the i     spatial component,    g-   i 
gravity intensity of the P"    component and 

s the 
nty jmpon 

Ul 
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Assume that each vertical gradient measurement is limited by a 
random error,   and that the expected rms value of this error is the same 
in all measurements.    Under these conditions the estimate of the rms 
fractional error in   g-    is given by 

rffg5 

sß W • ©' (■ • i) 
1/2 

(14) 

Thus if 

o-r. 
1Ä 

it is possible to improve the resolution of the gravitometer without de- 
creasing its averaging time.   The averaging time determines the uncer- 
tainty in gravity measurements due to residual vertical accelerations 
of the gravitometer.    This error source depends on aircraft control 
characteristics and aerodynamics and is very difficult to reduce by 
means other than long term averaging.    This is why the possibility of 
improving the measurements with gradiometer measurements is of 
interest. 

A gradiometer,   accurate enough to improve the resolution of 
gravity measurements directly,  presents a very difficult design prob- 
lem.    The main concern is with linear dynamic range.    A scanning 
gradiometer is always modulated by the full magnitude of the gradient. 
This precludes the biased mode of operation which is used to extend 
the sensitivity of gravitometers.    On the other hand,   small gravity 
gradients are easy to generate accurately.    This may permit a t'me 
shared mode of operation which calibrates a small range around a 
fixed but unknown value.    Unfortunately,   such a device is not useful 
for accurately decomposing g,    except perhaps,   at very high altitudes. 

Gradiometers,   in addition to the direct improvements in accur- 
acies of aerial gravity measurements,  can also heir  indirectly.    They 
are useful to a number of other systems which can .-educe the errors in 
the measurements.   In particular,  the class of systems described in 
Ref.  7 can reduce all errors related to level navigation.    The class of 
systems described in Ref.   10 can,   in addition,   compensate the flight to 
the true geopotential section to a very high accuracy,   reduce 

— v    12 

E m 
H-17 



and measure the height of the geopotential more accurately.    Thus,   with 
the aid of gradiometers,   it becomes possible to reduce the errors from 
all the sources limiting the present system. 

VI. GEOPOTENTIAL SECTIONING 

Gradient measurements make possible another method for mapping 
the external gravity field.    This method is aerial sectioning of the geo- 
potentials.    The method is equivalent conceptually to surface astro- 
geodesy (Refs.  8 and 9).    A number of system configurations which can 
derive geopotential section lines are described in Ref.   10.    These 
systems fall into two categories:   the first operates in a manner 
analogous to surface astrogeodetic measurements; the second recon- 
structs the section line from curvature measurements.    For simplicity, 
the concept will be explained in terms of the first category of systems. 

This astrogeodetic method employs a level and an inertial atti- 
tude reference (a star tracker or a stable platform) to determine the 
astronomical deflections of vertical   |a   and   T|a.    The station latitude 
and longitude of the measurement must be known to an angular accuracy 
commensurate with the measurement accuracy.     As a result,   surface 
stations must be precisely surveyed,   whereas aerial systems require 
precise navigation.    The measurements are used to plot geopotential 
sections in the local datum coordinate system. 

Surface astrogeodesy is at present confined to land areas. 
Therefore,   it is limited by the necessity for dependence on local datum 
coordinates.   Aerial sectioning,  on the other hand,   can be extended to 
gird the globe.    As a result it should be possible to completely map the 
geoid or other geopotentials using a single datum.    This possibility is 
particularly attractive with orbital surveying systems. 

A satellite-borne sectioning system is capable of covering the 
globe in a short period of time.    Its potential accuracy is better than 
that of present day satellite geodesy,  which estimates the spherical 
harmonics of the external gravity field from orbital tracking. 4   Mea- 
surements made by this method should supplement and enhance the 
results of physical geodesy.    They should also provide the best map 
of the field in near space. 

The required gradiometer accuracies for a sectioning are com- 
mensurate with those of the curvature aided leveling.    The level accur- 
acies are directly comparable to proportional   g   accuracies but the 
vertical gradient ac.uracies are considerably more relaxed.    As a 
result,   high resolution sectioning presents a simpler instrumentation 
problem than high resolution measurements of gravity.    In orbit there 
may not be a need for curvature aiding,  as a result the measurements 
of angles transverse to the orbit are as accurate as the measurement 
along the orbit.    Aerial measurements    of angles on the other hand 
are more accurate along the line of flight because of curvature aiding. 
As a result sectioning by curvature is preferred whenever curvature 
aiding is required. 

> 
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The Stokes formula for estimating the height anomaly   N   from 
the gravity anomalies   Ag   's   may also be used in reverse to estimate 
the high resolution   Ag   's   from   N      values obtained by sectioning. 
This reverse capability^ provides an alternative to high resolution mea- 
surements of gravity.    It trades off a difficult instrumentation problem 
for a much increased computational load. 

The Stokes formula is a linear equation in   Ag   's.    A set of 
such equations is required to derive the height anomalies   N  's   in a 
given area.    Conceptually,  it is possible to employ linear algebra 
and determinant manipulations to derive a set of linear equations 
which express   Ag     in terms of the   N  's.    The values of   Ag     will 
depend on   N     of the datum system used for deriving the   N   's. 
Using statistical estimation techniques it is possible to change   N0 
of the datum system so the computed values of 

agree most closely with the measured  Ag's.    The   N     values   which 
provide the best fit are those which would be computera from direct 
i-.easurements of the   Ag.'s   by the technique of Section V.    Thus, 
the two methods are equivalent. 

Similarly,  the Vening Meinesz formula   which relates the 
deflections of vertical   |    and   t]    from   Ag     is also a linear equation. 
It too can be reversed and used to compute Ag     from   ^      and   r\   . 
Statistical estimating techniques will remove   ^0   and   n      of the P 
datum,  thus resulting in   ^2   and   TJ  ,    the gravimetric deflections of 
vertical. ' ° 

The adjustment of the datum system to agree with results of 
the gravity measurements results in a geopotential map which is 
referenced tothe international ellipsoid."   This adjustment may be 
carried at the geopotential which is being mapped.    By repeating the 
process at different altitudes it is possible to map the true vertical 
profile of the external field.    This should improve the accuracy of 
vertical continuation in either direction,   and improve the map of the 
geoid. 
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